Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A = {0, 11} and B = {00, 01}. Find each of these sets.

a) AB b) BA c) \({{\bf{A}}^{\bf{2}}}\)d) \({{\bf{B}}^{\bf{3}}}\)

Short Answer

Expert verified
  1. AB={000,001,1100,1101}.
  2. BA={000,0011,010,0111}.
  3. \({{\bf{A}}^{\bf{2}}}\)= {00, 011, 0110, 1111}.
  4. \({{\bf{B}}^{\bf{3}}}\)= {000000, 000001, 000100, 000101, 010000, 010001, 010100, 010101}.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the strings

Given A= {0,11}and B= {00,01}.

Here AB represents the concatenation of A and B.

AB = {\(xy\)|\({\bf{x}} \in {\bf{A}}\,\,{\bf{and}}\,\,{\bf{y}} \in {\bf{B}}\)}

The strings are:

X

Y

XY

0

00

000

0

01

001

11

00

1100

11

01

1101

Thus AB = {000, 001, 1100, 1101}.

02

Evaluate the strings

The values A= {0,11}and B= {00,01}.

Here BA represents the concatenation of B and A.

BA = {\(xy\) |\({\bf{x}} \in {\bf{B}}\,\,{\bf{and}}\,\,{\bf{y}} \in {\bf{A}}\)}

The strings are:

\(X\)

\(Y\)

\(XY\)

00

0

000

00

11

0011

01

0

010

01

11

0111

Thus BA = {000, 0011, 010, 0111}.

03

 Determine the strings

Given data A = {0, 11} and B = {00, 01}.

Here \({{\bf{A}}^{\bf{2}}}\) represents the concatenation of A and A.

\({{\bf{A}}^{\bf{2}}}\)= {AA| \({\bf{x}} \in {\bf{A}}\,\,{\bf{and}}\,\,{\bf{y}} \in {\bf{A}}\)}

The strings are:

\(X\)

\(Y\)

\(XY\)

0

0

00

0

11

011

11

0

110

11

11

1111

Thus \({{\bf{A}}^{\bf{2}}}\)= {00, 011, 0110, 1111}.

04

Find the other values of \({{\bf{B}}^{\bf{3}}}\)

Given values of \({\bf{A = \{ 0,11\} }}\)&\({\bf{B = \{ 00,01\} }}\).

Here \({{\bf{B}}^{\bf{2}}}\)represents the concatenation of B and B.

\({{\bf{B}}^{\bf{2}}}{\bf{ = }}\left\{ {{\bf{BB|x}} \in {\bf{Bandy}} \in {\bf{B}}} \right\}\)

The strings are:

X

Y

XY

00

00

0000

00

01

0001

01

00

0100

01

01

0101

Thus \({{\bf{B}}^{\bf{2}}}\)= {0000, 0001, 0100, 0101}.

Now,\({{\bf{B}}^{\bf{3}}}{\bf{ = }}\left\{ {{{\bf{B}}^{\bf{2}}}{\bf{B|x}} \in {{\bf{B}}^2}{\bf{andy}} \in {\bf{B}}} \right\}\)

The strings are:

X

Y

XY

0000

00

000000

0000

01

000001

0001

00

000100

0001

01

000101

0100

00

010000

0100

01

010001

0101

00

010100

0101

01

010101

Thus \({{\bf{B}}^{\bf{3}}}\)= {000000, 000001, 000100, 000101, 010000, 010001, 010100, 010101}.

Therefore,

  1. AB= {000,001,1100,1101}.
  2. BA= {000, 0011,010, 0111}.
  3. \({{\bf{A}}^{\bf{2}}}\)= {00, 011, 0110, 1111}.
  4. \({{\bf{B}}^{\bf{3}}}\)= {000000, 000001, 000100, 000101, 010000, 010001, 010100, 010101}.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free