Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let V = {S, A, B, a, b} and T = {a, b}. Determine whether G = (V, T, S, P) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P, the set of productions, is

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ aAB, A }} \to {\bf{ Bb, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ aA, A }} \to {\bf{ a, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ABa, AB }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ ABA, A }} \to {\bf{ aB, B }} \to {\bf{ ab}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ bA, A }} \to {\bf{ B, B }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{f ) S }} \to {\bf{ aA, aA }} \to {\bf{ B, B }} \to {\bf{ aA, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{g) S }} \to {\bf{ bA, A }} \to {\bf{ b, S }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{h) S }} \to {\bf{ AB, B }} \to {\bf{ aAb, aAb }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{i) S }} \to {\bf{ aA, A }} \to {\bf{ bB, B }} \to {\bf{ b, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{j) S }} \to {\bf{ A, A }} \to {\bf{ B, B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

Short Answer

Expert verified

a) Type 2, not type 3

b) Type 3

c) Type 0, not type 1

d) Type 2, not type 3

e) Type 2, not type 3

f) Type 0, not type 1

g) Type 3

h) Type 0, not type 1

i) Type 2, not type 3

j) Type 2, not type 3

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Types of Phrase-Structure Grammars Phrase-structure grammars

(I)A type- 0 grammar has no restrictions on its production.

(II) A type-1 grammar can have productions of the form\({W_1} \to {W_2}\), where\({W_1} \to lAr\). and\({W_2} \to lWr\), where A is a non-terminal, I and r, are zero or more terminal or non-terminals and W is a non-empty string of terminal or non-terminals. It can also have the production Sàλ. as long as S does not appear on the right-hand side of any other production.

(III)A type- 2 grammar can have the productions only of the form\({W_1} \to {W_2}\), where \({W_1}\) is a single non-terminal.

(IV) A type- 3 grammar can have the productions only of the form \({W_1} \to {W_2}\) with \({W_1} = A\) and either \({W_2} = aB\) or \({W_2} = a\) where A and B are non-terminals and a is a terminal or with \({W_1} = S\) and\({W_2} = \lambda \).

02

Now, I shall determine whether \({\bf{G  =   }}\left( {{\bf{V, T, S, P}}} \right)\) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P.

Suppose \(G{\bf{ }} = {\bf{ }}\left( {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right)\) is a phrase structure grammar with P as the set of productions.

The objective is to determine the type of grammar G has in each of the set of productions p

(a) If\(P{\bf{ }} = {\bf{ }}\left\{ {S \to aAB,{\bf{ }}A{\bf{ }} \to {\bf{ }}Bb,{\bf{ }}B{\bf{ }} \to \lambda } \right\}\), here by the definition or type 2 and type 3 clears that G is a type of 2 not type 3.

Therefore, the G is a type-2 grammar but not a type-3grammar.

(b) If \(P{\bf{ }} = {\bf{ }}\left\{ {S \to aA,{\bf{ }}A{\bf{ }} \to {\bf{ }}a,{\bf{ }}A{\bf{ }} \to b} \right\}\), here A type- 3 grammar can have the productions only of the form \({W_1} \to {W_2}\) with \({W_1} = A\) and either \({W_2} = aB\) or \({W_2} = a\)

Hence, the G is a type-3 grammar.

(c) If\(P{\bf{ }} = {\bf{ }}\left\{ {S \to ABa,{\bf{ }}AB{\bf{ }} \to {\bf{ }}a} \right\}\), here A type- 0 grammar has no restrictions on its production. And A type-1 grammar can have productions of the form\({W_1} \to {W_2}\), where\({W_1} \to lAr\). and\({W_2} \to lWr\).

Accordingly, the G is a type -0 grammar but not type-1 grammar.

(d) If\(P{\bf{ }} = {\bf{ }}\left\{ {S \to ABA,{\bf{ }}A{\bf{ }} \to {\bf{ }}aB,{\bf{ }}B{\bf{ }} \to ab} \right\}\), here A type- 2 grammar can have the productions only of the form\({W_1} \to {W_2}\), where \({W_1}\) is a single non-terminal. And by A type- 3 grammar can have the productions only of the form \({W_1} \to {W_2}\) with \({W_1} = A\) and either \({W_2} = aB\) or\({W_2} = a\).

Thereafter, the G is a type -2 but not a type-3 grammar.

(e) if \(P{\bf{ }} = {\bf{ }}\left\{ {S \to bA,{\bf{ }}A{\bf{ }} \to {\bf{ }}B,{\bf{ }}B{\bf{ }} \to a} \right\}\),

Here A type- 2 grammar can have the productions only of the form\({W_1} \to {W_2}\), where \({W_1}\) is a single non-terminal. And by A type- 3 grammar can have the productions only of the form \({W_1} \to {W_2}\) with \({W_1} = A\) and either \({W_2} = aB\) or\({W_2} = a\).

Henceforth, the G is a type - 2 but not a type 3 grammar.

(f) If\(P{\bf{ }} = {\bf{ }}\left\{ {S \to aA,{\bf{ }}aA{\bf{ }} \to {\bf{ }}B,{\bf{ }}B{\bf{ }} \to aA,\,A \to B} \right\}\), here A type- 0 grammar has no restrictions on its production. And A type-1 grammar can have productions of the form\({W_1} \to {W_2}\), where\({W_1} \to lAr\) and\({W_2} \to lWr\).

So, the G is a type-0 but not a type-1 grammar.

(g) If\(P{\bf{ }} = {\bf{ }}\left\{ {S \to bA,{\bf{ }}A{\bf{ }} \to {\bf{ }}b,{\bf{ }}S \to \lambda } \right\}\), A type- 3 grammar can have the productions only of the form \({W_1} \to {W_2}\) with \({W_1} = A\) and either \({W_2} = aB\) or\({W_2} = a\).

Therefore, the G is a type-3 grammar.

(h) If \(P{\bf{ }} = {\bf{ }}\left\{ {S \to AB,{\bf{ }}B{\bf{ }} \to {\bf{ }}aAb,{\bf{ }}aAb{\bf{ }} \to b} \right\}\),

Hence, the G is a type-0 but not a type-1 grammar.

(i) If \(P{\bf{ }} = {\bf{ }}\left\{ {S \to aA,{\bf{ }}A{\bf{ }} \to {\bf{ }}bB,{\bf{ }}B{\bf{ }} \to b,\,B \to \lambda } \right\}\),

So, the G is a type-2 but not a type-3 grammar.

(j) If \(P{\bf{ }} = {\bf{ }}\left\{ {S \to A,{\bf{ }}A{\bf{ }} \to {\bf{ }}B,{\bf{ }}B{\bf{ }} \to \lambda } \right\}\),

Therefore, the G is a type-2 but not a type-3 grammar.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free