Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct phrase-structure grammars to generate each of these sets.

a) \(\left\{ {\left. {{\bf{0}}{{\bf{1}}^{{\bf{2n}}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

b) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{{\bf{2n}}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

c) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{m}}}{{\bf{0}}^{\bf{n}}}} \right|{\bf{m}} \ge {\bf{0}}\,{\bf{and}}\,{\bf{n}} \ge {\bf{0}}} \right\}\)

Short Answer

Expert verified

a) The phase structure grammar is

\(G{\bf{ }} = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

\(T = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

b) The phase structure grammar is

\(G = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S} \right\}\)

\(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

c) The phase structure grammar is

\(G = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

\(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construct a phrase-structure grammar: 

Let\(G{\bf{ }} = {\bf{ }}\left( {{\rm{V, T, S, P}}} \right)\)be the phrase structure grammar that produces all signed decimal numbers. It consists of a sign, either + or -, a non-negative integer, and a decimal fraction, which can either be the empty string or a decimal point followed by a positive integer.

02

Construct phrase-structure grammars to generate part (a).

(a)

The set is \(L = \left\{ {\left. {{{01}^{2n}}} \right|n \ge 0} \right\}\).

Let ‘S’ be the start symbol.

The possible symbols in strings of Z are \(T{\bf{ }} = {\bf{ }}\left\{ {0,\left. 1 \right)} \right.\).

The string needs to start with a 0, thus the string is of the form 0A, and thus required production step is from S to 0A.

Add an even number of 1's or no 1's so a production step from A to 11A and to λ.

Set of productions P:

\(\begin{array}{l}S \to 0A\\A \to 11A\\A \to {\rm{\lambda }}\end{array}\)

The vocabulary V then contains all symbols in T and all symbols used in the set of production P.

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

Hence, the phase structure grammar is:

\(G{\bf{ }} = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

\(T = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

03

Construct phrase-structure grammars to generate part (b).

(b)

The set is \(L = \left\{ {\left. {{0^n}{1^{2n}}} \right|n \ge 0} \right\}\).

Let ‘S’ be the start symbol.

The possible symbols in strings of Z are \(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\).

The string is either the empty string or the string starts with a 0 while it also ends with two 1’s, which implies that a production step from S to λ and to 0S11.

Set of productions p:

\(\begin{array}{l}S \to 0S11\\S \to {\rm{\lambda }}\end{array}\)

The vocabulary V then contains all symbols in T and all symbols used in the set of production P.

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S} \right\}\)

Hence, the phase structure grammar is:

\(G = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S} \right\}\)

\(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

04

Construct phrase-structure grammars to generate part (c).

(c)

The set is \(L = \left\{ {\left. {{0^n}{1^m}{0^n}} \right|m \ge 0\,{\rm{and}}\,n \ge 0} \right\}\).

Let ‘S’ be the start symbol.

The possible symbols in strings of Z are \(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\).

The string is either the empty string or the string starts with a 0 and ends with a 0, which implies that a production step from S to λ and to 0S0.

Also, add any number of 1's in the center which will call A, this implies that SàA and from A to 1A.

Set of productions P:

\(\begin{array}{l}S \to 0S0\\S \to A\\S \to {\rm{\lambda }}\\A \to 1A\\A \to {\rm{\lambda }}\end{array}\)

The vocabulary V then contains all symbols in T and all symbols used in the set of production P.

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

Hence, the phase structure grammar is:

\(G = {\bf{ }}\left\{ {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right\}\)

\(V{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1,{\bf{ }}S,{\bf{ }}A} \right\}\)

\(T{\bf{ }} = {\bf{ }}\left\{ {0,{\bf{ }}1} \right\}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free