Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a Turing machine that recognizes the set \(\left\{ {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}{{\bf{2}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\)

Short Answer

Expert verified

The constructed Turing machine that recognizes the set\(\left\{ {{0^n}{1^n}{2^n}\mid n \ge 0} \right\}\)is

\(\begin{array}{c}\left( {{s_0},\;B,{s_9},\;B,\;L} \right)\\\left( {{s_0},0,{s_1},0,\;L} \right)\\\left( {{s_1},\;B,{s_2},E,R} \right)\\\left( {{s_2},M,{s_2},M,R} \right)\\\left( {{s_2},0,{s_3},M,R} \right)\\\left( {{s_3},0,{s_3},0,R} \right)\\\left( {{s_3},M,{s_3},M,R} \right)\\\left( {{s_3},1,{s_4},M,} \right.R)\\\left( {{s_4},1,{s_4},1,R} \right)\\\left( {{s_4},M,{s_4},M,R} \right)\\\left( {{s_4},2,{s_5},M,R} \right)\\\left( {{s_5},2,{s_5},2,R} \right)\\\left( {{s_5},\;B,{s_6},\;B,\;L} \right)\\\left( {{s_6},M,{s_8},M,L} \right)\\\left( {{s_6},2,{s_7},2,\;L} \right)\\\left( {{s_7},0,{s_7},0,L} \right)\\\left( {{s_7},1,{s_7},1,L} \right)\\\left( {{s_7},2,{s_7},2,L} \right)\\\left( {{s_7},M,{s_7},M,L} \right)\\\left( {{s_7},E,{s_2},E,R} \right)\\\left( {{s_8},M,{s_8},M,L} \right)\\\left( {{s_8},E,{s_9},E,L} \right)\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition 

A Turing machine \(T = \left( {S,I,f,{s_0}} \right)\) consists of a finite set \(S\) of states, an alphabet \({\bf{I}}\) containing the blank symbol \({\bf{B}}\), a partial function \({\bf{f}}\) from \({\bf{S \times I}}\) to \({\bf{S \times I \times \{ R,L\} }}\), and a starting state \({{\bf{s}}_{\bf{0}}}\).

This will be similar to the machine in Example 3, in that you will change the digits one at a time to a new symbol \({\bf{M}}\). You can't work from the outside in as you did there, however, so you'll replace all three digits from left to right. Furthermore, you'll put a new symbol, \({\bf{E}}\), at the left end of the input in order to tell more easily when you have arrived back at the starting point.State \({{\bf{s}}_{\bf{9}}}\) is our (accepting) final state. States \({{\bf{s}}_{\bf{0}}}\) and \({{\bf{s}}_{\bf{1}}}\) will write an in to the left of the initial input and return to the first input square, entering state \({{\bf{s}}_{\bf{2}}}\). (If, however, the tape is blank, then the machine will accept immediately, and if the first symbol is not a 0 , then it will reject immediately.) The five tuples are \(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,\;B,}}{{\bf{s}}_{\bf{9}}}{\bf{,\;B,\;L}}} \right)\),\(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,0,\;L}}} \right)\), and \(\left( {{{\bf{s}}_{\bf{1}}}{\bf{,\;B,}}{{\bf{s}}_{\bf{2}}}{\bf{,E,R}}} \right)\).State \({{\bf{s}}_{\bf{2}}}\) will skip past any \({\bf{M's}}\) until it finds the first 0 , change it to an \({\bf{M}}\), and enter state \({{\bf{s}}_{\bf{3}}}\). The transitions are \(\left( {{{\bf{s}}_{\bf{2}}}{\bf{,M,}}{{\bf{s}}_{\bf{2}}}{\bf{,M,R}}} \right)\) and \(\left( {{{\bf{s}}_{\bf{2}}}{\bf{,0,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,R}}} \right)\).

02

Step \(2\): Constructing the Turing machine

Similarly, state \({{\bf{s}}_{\bf{3}}}\) will skip past any remaining `\(0{\bf{'s}}\) and any \({\bf{M's}}\) until it finds the first 1, change it to an \({\bf{M}}\), and enter state \({{\bf{s}}_{\bf{4}}}\). The transitions are \(\left( {{{\bf{s}}_{\bf{3}}}{\bf{,0,}}{{\bf{s}}_{\bf{3}}}{\bf{,0,R}}} \right)\),\(\left( {{{\bf{s}}_{\bf{3}}}{\bf{,M,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,R}}} \right)\) and \(\left( {{{\bf{s}}_{\bf{3}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,M,}}} \right.{\bf{R)}}\). State \({{\bf{s}}_{\bf{4}}}\) will do the same for the first 2 (skipping past remaining \(1{\bf{'s}}\) and \({\bf{M's}}\), and ending in state \(\left( {{{\bf{s}}_{\bf{5}}}} \right)\), with transitions \(\left( {{{\bf{s}}_{\bf{4}}}{\bf{,}}1{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}1{\bf{,R}}} \right)\),\(\left( {{{\bf{s}}_{\bf{4}}}{\bf{,M,}}{{\bf{s}}_{\bf{4}}}{\bf{,M,R}}} \right)\) and \(\left( {{{\bf{s}}_{\bf{4}}}{\bf{,2,}}{{\bf{s}}_{\bf{5}}}{\bf{,M,R}}} \right)\). State \({{\bf{s}}_{\bf{5}}}\) then will skip over any remaining \(2{\bf{'s}}\) and (if there is any chance of accepting this string) encounter the terminating blank. The transitions are \(\left( {{{\bf{s}}_{\bf{5}}}{\bf{,2,}}{{\bf{s}}_{\bf{5}}}{\bf{,2,R}}} \right)\) and \(\left( {{{\bf{s}}_{\bf{5}}}{\bf{,\;B,}}{{\bf{s}}_{\bf{6}}}{\bf{,\;B,\;L}}} \right)\).

Note that once this blank has been seen, you back up to the last symbol before it and enter state \({{\bf{s}}_{\bf{6}}}\). There are now two possibilities. If the scanned square is an \({\bf{M}}\), then you should accept if and only if the entire string consists of \({\bf{M's}}\)at this point. You will enter state \({{\bf{s}}_{\bf{8}}}\) to check this, with the transition \(\left( {{{\bf{s}}_{\bf{6}}}{\bf{,M,}}{{\bf{s}}_{\bf{8}}}{\bf{,M,L}}} \right)\). Otherwise, there will be a \(2\) here, and you want to go back to the start of the string to begin the cycle all over; you'll use state \({{\bf{s}}_{\bf{7}}}\) to accomplish this, so you put in the five-tuple \(\left( {{{\bf{s}}_{\bf{6}}}{\bf{,2,}}{{\bf{s}}_{\bf{7}}}{\bf{,2,\;L}}} \right)\). In this latter case, the machine should skip over everything and start over in state \({{\bf{s}}_{\bf{2}}}\). The transitions \(\left( {{{\bf{s}}_{\bf{7}}}{\bf{,0,}}{{\bf{s}}_{\bf{7}}}{\bf{,0,L}}} \right)\), \(\left( {{{\bf{s}}_{\bf{7}}}{\bf{,}}1{\bf{,}}{{\bf{s}}_{\bf{7}}}{\bf{,}}1{\bf{,L}}} \right)\), \(\left( {{{\bf{s}}_{\bf{7}}}{\bf{,2,}}{{\bf{s}}_{\bf{7}}}{\bf{,2,L}}} \right)\), \(\left( {{{\bf{s}}_{\bf{7}}}{\bf{,M,}}{{\bf{s}}_{\bf{7}}}{\bf{,M,L}}} \right)\), and \(\left( {{{\bf{s}}_{\bf{7}}}{\bf{,E,}}{{\bf{s}}_{\bf{2}}}{\bf{,E,R}}} \right)\) accomplish this. But if you entered state \({{\bf{s}}_{\bf{8}}}\), then you need to make sure that there is nothing but \({\bf{M's}}\) all the way back to the starting point; you add the five-tuples \(\left( {{{\bf{s}}_{\bf{8}}}{\bf{,M,}}{{\bf{s}}_{\bf{8}}}{\bf{,M,L}}} \right)\) and \(\left( {{{\bf{s}}_{\bf{8}}}{\bf{,E,}}{{\bf{s}}_{\bf{9}}}{\bf{,E,L}}} \right)\), and you're finished.

Hence, the constructed Turing machine that recognizes the set\(\left\{ {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}{{\bf{2}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\)is

\(\begin{array}{c}\left( {{s_0},\;B,{s_9},\;B,\;L} \right)\\\left( {{s_0},0,{s_1},0,\;L} \right)\\\left( {{s_1},\;B,{s_2},E,R} \right)\\\left( {{s_2},M,{s_2},M,R} \right)\\\left( {{s_2},0,{s_3},M,R} \right)\\\left( {{s_3},0,{s_3},0,R} \right)\\\left( {{s_3},M,{s_3},M,R} \right)\\\left( {{s_3},1,{s_4},M,} \right.R)\\\left( {{s_4},1,{s_4},1,R} \right)\\\left( {{s_4},M,{s_4},M,R} \right)\\\left( {{s_4},2,{s_5},M,R} \right)\\\left( {{s_5},2,{s_5},2,R} \right)\\\left( {{s_5},\;B,{s_6},\;B,\;L} \right)\\\left( {{s_6},M,{s_8},M,L} \right)\\\left( {{s_6},2,{s_7},2,\;L} \right)\\\left( {{s_7},0,{s_7},0,L} \right)\\\left( {{s_7},1,{s_7},1,L} \right)\\\left( {{s_7},2,{s_7},2,L} \right)\\\left( {{s_7},M,{s_7},M,L} \right)\\\left( {{s_7},E,{s_2},E,R} \right)\\\left( {{s_8},M,{s_8},M,L} \right)\\\left( {{s_8},E,{s_9},E,L} \right)\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free