Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a Turing machine that recognizes the set \(\left\{ {{0^{2n}}{1^n}\mid n \ge 0} \right\}\).

Short Answer

Expert verified

The constructed Turing machine that recognizes the set\(\left\{ {{0^{2n}}{1^n}\mid n \ge 0} \right\}\)is

\(\begin{array}{c}{\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right),{\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}{\bf{,}}{{\bf{s}}_{\bf{6}}}{\bf{,}}{{\bf{s}}_{\bf{7}}}} \right\},\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{1}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,0,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,1,}}{{\bf{s}}_{\bf{2}}}{\bf{,1,R}}} \right),\\\left( {{{\bf{s}}_{\bf{2}}}{\bf{,M,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,B,}}{{\bf{s}}_{\bf{3}}}{\bf{,B,L}}} \right),\left( {{{\bf{s}}_{\bf{3}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,1,L}}} \right),\\\left( {{{\bf{s}}_{\bf{4}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,M,}}{{\bf{s}}_{\bf{6}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,M,}}{{\bf{s}}_{\bf{0}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{6}}}{\bf{,M,}}{{\bf{s}}_7}{\bf{,M,R}}} \right)\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step \({\bf{1}}\):Definition 

A Turing machine \({\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right)\) consists of a finite set \({\bf{S}}\) of states, an alphabet \({\bf{I}}\) containing the blank symbol \({\bf{B}}\), a partial function \({\bf{f}}\) from \({\bf{S \times I}}\) to \({\bf{S \times I \times \{ R,L\} }}\), and a starting state \({{\bf{s}}_{\bf{0}}}\).

Given:\(\left\{ {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}{{\bf{2}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\)

Turing machine is \(\left\{ {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\).

The Turing machine \({\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right)\) that recognizes the set \(\left\{ {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\), uses \({\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}{\bf{,}}{{\bf{s}}_{\bf{6}}}} \right\}\)with \({\bf{I = }}\left\{ {{\bf{0,1, M, B}}} \right\}\) and \({{\bf{s}}_{\bf{0}}}\) the starting state, and is defined by the following five-tuples:

\(\begin{array}{c}\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{1}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,0,R}}} \right),\left( {{{\bf{s}}_{\bf{1}}}{\bf{,1,}}{{\bf{s}}_{\bf{1}}}{\bf{,1,R}}} \right),\left( {{{\bf{s}}_{\bf{1}}}{\bf{,M,}}{{\bf{s}}_{\bf{2}}}{\bf{,M,L}}} \right),\\\left( {{{\bf{s}}_{\bf{1}}}{\bf{,B,}}{{\bf{s}}_{\bf{2}}}{\bf{,B,L}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,1,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{3}}}{\bf{,1,}}{{\bf{s}}_{\bf{3}}}{\bf{,1,L}}} \right),\left( {{{\bf{s}}_{\bf{3}}}{\bf{,0,}}{{\bf{s}}_{\bf{4}}}{\bf{,0,L}}} \right),\\\left( {{{\bf{s}}_{\bf{3}}}{\bf{,M,}}{{\bf{s}}_{\bf{5}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,0,}}{{\bf{s}}_{\bf{4}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,M,}}{{\bf{s}}_{\bf{0}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,M,}}{{\bf{s}}_{\bf{6}}}{\bf{,M,R}}} \right)\end{array}\)

02

Form of the constructing machine

Basically, the machine marks the first zero at state \({{\bf{s}}_{\bf{0}}}\). \({\bf{M}}\) the moves to the end of the string using state \({{\bf{s}}_{\bf{1}}}\). Once at the end of the string, the last \({\bf{1}}\) is marked \({\bf{M}}\) in state \({{\bf{s}}_{\bf{2}}}\). Next, it moves back to last marked \({\bf{M}}\) or the last \({\bf{0}}\) in the beginning of the string using \({{\bf{s}}_{\bf{3}}}\). If the \({\bf{M}}\) is not immediately before the last marked \({\bf{M}}\) or before the last \({\bf{1}}\) (thus there is a \({\bf{0}}\) in between), then it moves to state \({{\bf{s}}_{\bf{4}}}\). It then moves to the beginning of the string until it obtain a marked value \({\bf{M}}\). Once the input is a marked value, it moves back to the initial state \({{\bf{s}}_{\bf{0}}}\). If the \({\bf{M}}\) is immediately before the last marked \({\bf{M}}\) or before the last \({\bf{1}}\), then it moves to state \({{\bf{s}}_{\bf{5}}}\) and next you move to the final state \({{\bf{s}}_{\bf{6}}}\) when there is no \({\bf{1}}\) left over.

Turing machine is \(\left\{ {{{\bf{0}}^{{\bf{2n}}}}{{\bf{1}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\).

It will adjust the previous Turing machine that recognizes the set \(\left\{ {{{\bf{0}}^{{\bf{2n}}}}{{\bf{1}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\), such that it recognizes the set \(\left\{ {{{\bf{0}}^{{\bf{2n}}}}{{\bf{1}}^{\bf{n}}}\mid {\bf{n}} \ge {\bf{0}}} \right\}\).

It adds an additional state \({{\bf{s}}_{\bf{7}}}\) to the Turing machine.

\({\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}{\bf{,}}{{\bf{s}}_{\bf{6}}}{\bf{,}}{{\bf{s}}_{\bf{7}}}} \right\}\)

03

Constructing the Turing machine

If the input is \({\bf{0}}\) on the first step, then it still moves to the state \({{\bf{s}}_{\bf{1}}}\) and change the input to \({\bf{M}}\). Next, it changes the following \({\bf{0}}\) also to \({\bf{M}}\) and move to the state \({{\bf{s}}_{\bf{2}}}\) (such that the first pair of \({\bf{0}}\)’s are marked instead of just a single \({\bf{0}}\)).

\(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,M,R}}} \right)\),\(\left( {{{\bf{s}}_{\bf{1}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,M,R}}} \right)\)

Next, it changes all other five-tuples containing \({{\bf{s}}_{\bf{1}}}\) to \({{\bf{s}}_{\bf{6}}}\) the state \({{\bf{s}}_{\bf{2}}}\) to \({{\bf{s}}_{\bf{7}}}\) respectively. Note that the remainder of the algorithm will then again mark the last \({\bf{1}}\) by \({\bf{M}}\) and then move to the beginning of the string again to mark the first two zeros and the last \({\bf{1}}\) until all \({\bf{0}}\)’s and \({\bf{1}}\)’s are marked or until note that the string is not of the required form.

\(\begin{array}{c}\left( {{{\bf{s}}_{\bf{2}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,0,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,1,}}{{\bf{s}}_{\bf{2}}}{\bf{,1,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,M,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,B,}}{{\bf{s}}_{\bf{3}}}{\bf{,B,L}}} \right),\\\left( {{{\bf{s}}_{\bf{3}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,1,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,M,}}{{\bf{s}}_{\bf{6}}}{\bf{,M,R}}} \right),\\\left( {{{\bf{s}}_{\bf{5}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,M,}}{{\bf{s}}_{\bf{0}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{6}}}{\bf{,M,}}{{\bf{s}}_7}{\bf{,M,R}}} \right)\end{array}\)

Hence, the constructed Turing machine that recognizes the set\(\left\{ {{0^{2n}}{1^n}\mid n \ge 0} \right\}\)is

\(\begin{array}{c}\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{1}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{1}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,0,}}{{\bf{s}}_{\bf{2}}}{\bf{,0,R}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,1,}}{{\bf{s}}_{\bf{2}}}{\bf{,1,R}}} \right),\\\left( {{{\bf{s}}_{\bf{2}}}{\bf{,M,}}{{\bf{s}}_{\bf{3}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{2}}}{\bf{,B,}}{{\bf{s}}_{\bf{3}}}{\bf{,B,L}}} \right),\left( {{{\bf{s}}_{\bf{3}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,M,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,1,}}{{\bf{s}}_{\bf{4}}}{\bf{,1,L}}} \right),\\\left( {{{\bf{s}}_{\bf{4}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{4}}}{\bf{,M,}}{{\bf{s}}_{\bf{6}}}{\bf{,M,R}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,0,}}{{\bf{s}}_{\bf{5}}}{\bf{,0,L}}} \right),\left( {{{\bf{s}}_{\bf{5}}}{\bf{,M,}}{{\bf{s}}_{\bf{0}}}{\bf{,M,R}}} \right),\\\left( {{{\bf{s}}_{\bf{6}}}{\bf{,M,}}{{\bf{s}}_7}{\bf{,M,R}}} \right)\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free