Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given a deterministic finite-state automaton \({\bf{M = (S,I,f,}}{{\bf{s}}_{\bf{o}}}{\bf{,F)}}\), use structural induction and the recursive definition of the extended transition function f to prove that \({\bf{f }}\left( {{\bf{s, x y}}} \right){\bf{ = f }}\left( {{\bf{f }}\left( {{\bf{s ,x}}} \right){\bf{, y}}} \right)\)for all states \({\bf{s}} \in {\bf{S}}\)and all strings\({\bf{x}} \in {\bf{I}}*{\bf{andy}} \in {\bf{I}}*\).

Short Answer

Expert verified

The result is \({\bf{f }}\left( {{\bf{s, x y}}} \right){\bf{ = f }}\left( {{\bf{f }}\left( {{\bf{s , x}}} \right){\bf{, y}}} \right)\)for all states \({\bf{s}} \in {\bf{S}}\)and all strings \({\bf{x}} \in {\bf{I}}*\)and\({\bf{y}} \in {\bf{I}}*\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Mention given details

Given \({\bf{M = (S,I,f,}}{{\bf{s}}_{\bf{o}}}{\bf{,F)}}\)is a deterministic finite state automaton.

F is an extended transition function,

(1). \({\bf{f }}\left( {{\bf{s, x}}} \right){\bf{ = s}}\)for the state\({\bf{s}} \in {\bf{S}}\)and the input string \({\bf{x}} \in {\bf{I*}}\)and

(2). \({\bf{f(s,xa) = f(f(s,x),a)s}} \in {\bf{S, x}} \in {\bf{I*}}\).

02

Proof by structural induction.

Let \({\bf{y = \lambda }}\)

By part (1) of the definition of the extended transition function \({\bf{f(f(s,x),\lambda ) = s(s,x)}}\)

Thus, the statement \({\bf{f(s,xy) = f(f(s,x),y)}}\) is true for the base case.

Put \({\bf{y = wa}}\) with \({\bf{w}} \in {\bf{I*}}\)and\({\bf{a}} \in {\bf{I}}\).

Assume that the statement is true for w. thus \({\bf{f(s,xw) = f(f(s,x),w)}}\)

In part (2) of the definition of the extended transition function using \({\bf{xw}} \ in {\bf{I*}}\) then:

\({\bf{f(s,xwa) = f(f(s,xw),a)}}\)

Since \({\bf{f(s,xw) = f(f(s,x),w)}}\)

\({\bf{f(s,xwa) = f(f(s,xw),a) = f(f(fs,w),w),a)}}\)

In part (2) of the definition of the extended transition using\({\bf{w}} \in {\bf{I*}}\),\({\bf{a}} \ in {\bf{I}} \ subseteq {\bf{I*}}\)

\({\bf{f(s,xwa) = f(f(s,xw),a) = f(f(fs,w),w),a) = f(f(s,x),wa)}}\)

Therefore \({\bf{f }}\left( {{\bf{s, x y}}} \right){\bf{ = f }}\left( {{\bf{f }}\left( {{\bf{s , x}}} \right){\bf{, y}}} \right)\)for all states \({\bf{s}} \in {\bf{S}}\)and all strings \({\bf{x}} \in {\bf{I*}}\)and\({\bf{y}} \in {\bf{I*}}\).

Thus, the statement \({\bf{f(s,xy) = f(f(s,x),y)}}\)is true.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free