Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether all the strings in each of these sets are recognized by the deterministic finite-state automaton in Figure 1.

a){0}* b){0} {0}* c){1} {0}*

d){01}* e){0}*{1}* f){1} {0,1}*

Short Answer

Expert verified

(a) It is recognized.

(b) It is recognized.

(c) 1 is not recognized.

(d) None of the strings are recognized.

(e) Not all strings are recognized.

(f) Not all strings are recognized.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

According to figure 1.

Here the given figure contains four states \({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\)to \({{\bf{s}}_{\bf{j}}}\) with label x, then we write in a row \({{\bf{s}}_{\bf{j}}}\) the row \({{\bf{s}}_{\bf{i}}}\) column x of the following table.

State

0

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{o}}}\) is marked as the start state.

Since \({{\bf{s}}_{\bf{o}}}\) and\({{\bf{s}}_{\bf{3}}}\) are encircled twice, a string will be recognized by the deterministic finite state automaton if we end at state \({{\bf{s}}_{\bf{o}}}\) or state \({{\bf{s}}_{\bf{3}}}\).

02

Solving for {0}*

Here the given data is {0}*.

Let's determine the sequence of states that are visited when the input is 111.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\( \vdots \)

\({{\bf{s}}_{\bf{o}}}\)

\( \vdots \)

\({{\bf{s}}_{\bf{o}}}\)

\( \vdots \)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

Since we always end at the final state \({{\bf{s}}_{\bf{o}}}\), the string is recognized by the deterministic finite state automaton.

03

Result for {0} {0}*

Here the given data is {0} {0)*.

The set {0}* contains any sequence of 0’s thus {0} {0}* contains any sequence of 0’s with at least one 0.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

.

.

.

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

Since we always end at the final state \({{\bf{s}}_{\bf{o}}}\) the string is recognized by the deterministic finite state automaton.

04

Determine the result for {1} {0}*

Here the given data is {1} {0}*.

The set {0}* contain any sequence of 0’s thus {1} {0}* contains any sequence of 0’s.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

0

\({{\bf{s}}_{\bf{i}}}\)

\({{\bf{s}}_{\bf{i}}}\)

0

\({{\bf{s}}_{\bf{i}}}\)

\({{\bf{s}}_{\bf{i}}}\)

0

\({{\bf{s}}_{\bf{i}}}\)

\({{\bf{s}}_{\bf{i}}}\)

.

.

.

.

.

.

0

\({{\bf{s}}_{\bf{i}}}\)

\({{\bf{s}}_{\bf{o}}}\)

Here 1 is not recognized by the deterministic finite state automaton. Since \({{\bf{s}}_{\bf{1}}}\) is not final, while 1 is string in {1} {0}*.

05

Find the result for {01}*

Here the given data is {01}*.

The set {01}* contains any sequence of 0’s.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

0

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{o}}}\)

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

0

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{o}}}\)

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

.

.

.

.

.

.

1

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

Since we always end at the final state \({{\bf{s}}_{\bf{1}}}\)and \({{\bf{s}}_{\bf{1}}}\) is not the final state, none of the strings is recognized by the deterministic finite state automaton.

06

Find the result for {0}*{1}*

Here the given data is {0}*{1}*.

The set {0}* contains any sequence of 0’s.

The set {0}* contains any sequence of 0’s.

Thus {0}*{1}* contains any sequence of 0’s followed by any sequence of 1’s.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

0

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\)

.

.

.

.

.

.

1

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

1

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{o}}}\)

.

.

.

.

.

.

Sometimes we end at the final state \({{\bf{s}}_{\bf{1}}}\)or\({{\bf{s}}_{\bf{2}}}\) and thus some strings are not recognized by the deterministic finite state automaton.

07

Find the result for {1} {0, 1}*

Here the given data is {1} {0, 1}*.

The set {0, 1}* contains any sequence of 0’s or 1’s.

Thus {1}*{0, 1}* contains all bit strings starting with a 1’s.

If \({{\bf{s}}_{\bf{i}}}\) is the next state of a digit, then \({{\bf{s}}_{\bf{i}}}\) is the start state of the next digit.

Input

Start state

Next state

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

Here 1 is not recognized by the deterministic finite state automaton, since \({{\bf{s}}_{\bf{1}}}\) is not final, while 1 is a string in {1} {0, 1}* and thus not all strings are recognized.

Therefore the results are:

(a) It is recognized.

(b) It is recognized.

(c) 1 is not recognized.

(d) None of the strings are recognized.

(e) Not all strings are recognized.

(f) Not all strings are recognized.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free