Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a) Show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).

b) Show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.

Short Answer

Expert verified

(a) Proved, \({\bf{L = \{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\) is a sentence of the language of the grammar\({{\bf{G}}_{\bf{1}}}\).

(b) Proved, \({\bf{L = \{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\) is the language of the grammar\({{\bf{G}}_{\bf{2}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

about the language generated by the grammar.

Let \({\bf{G = }}\left( {{\bf{V, T, S, P}}} \right)\) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S.

02

Firstly, we shall show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).

\({{\bf{G}}_{\bf{1}}}{\bf{ = }}\left( {{\bf{V, T, S, P}}} \right)\)is the phrase structure grammar with\({\bf{V = }}\left\{ {{\bf{0, 1, S}}} \right\}{\bf{, T = }}\left\{ {{\bf{0, 1}}} \right\}\), S is the starting symbol and the production are\({\bf{S}} \to {\bf{0S, S}} \to {\bf{S1}}\), \({\bf{S}} \to {\bf{\lambda }}\)repeated application of the productions \({\bf{S}} \to {\bf{0S, S}} \to {\bf{S1}}\) produce strings of a sequence of 0s followed by a string of 1s.

Hence,\({\bf{L = \{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\)is a sentence of the language of the grammar

\({{\bf{G}}_{\bf{1}}}\).

03

Now, we shall show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.

\({{\bf{G}}_{\bf{2}}}{\bf{ = }}\left( {{\bf{V, T, S, P}}} \right)\) is the phrase structure grammar with\({\bf{V = }}\left\{ {{\bf{S, A, 0, 1}}} \right\}{\bf{, T = }}\left\{ {{\bf{0, 1}}} \right\}\), S is the starting symbol and the production are \({\bf{S}} \to {\bf{0S, S}} \to {\bf{1A, S}} \to {\bf{1, A}} \to {\bf{1A, A}} \to {\bf{1}}\) and\({\bf{S}} \to {\bf{\lambda }}\).

\({\bf{\lambda ,}}\,{\bf{1}}\)are sentences. Repeated application of \({\bf{S}} \to {\bf{0S}}\) generate sentences like \({{\bf{0}}^{\bf{m}}}\) and \({\bf{S}} \to {\bf{1A, A}} \to {\bf{1 A, A}} \to {\bf{1}}\) generate sentences like \({{\bf{1}}^{\bf{n}}}\) and \({\bf{S}} \to {\bf{0S, S}} \to {\bf{1A, A}} \to {\bf{1A, A}} \to {\bf{1}}\)generate strings of a sequence of 0's followed by a sequence of 1's.

Hence,\({\bf{L = \{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\)is the language of grammar\({{\bf{G}}_{\bf{2}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

show that the grammar given in Example 5 generates the set \({\bf{\{ }}{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).

Construct a derivation of \({{\bf{0}}^{\bf{3}}}{{\bf{1}}^{\bf{3}}}\) using the grammar given in Example 5.

Let V be an alphabet, and let A and B be subsets of \({\bf{V*}}\) Show that \({\bf{|AB}}\left| {{\rm{ }} \le {\rm{ }}} \right|{\bf{A||B|}}\).

Describe how productions for a grammar in extended Backusโ€“Naur form can be translated into a set of productions for the grammar in Backusโ€“Naur form.

This is the Backusโ€“Naur form that describes the syntax of expressions in postfix (or reverse Polish) notation.

\(\begin{array}{c}\left\langle {{\bf{expression}}} \right\rangle {\bf{ :: = }}\left\langle {{\bf{term}}} \right\rangle {\bf{|}}\left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{addOperator}}} \right\rangle \\{\bf{ }}\left\langle {{\bf{addOperator}}} \right\rangle {\bf{:: = + | - }}\\\left\langle {{\bf{term}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{factor}}} \right\rangle {\bf{|}}\left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{mulOperator}}} \right\rangle {\bf{ }}\\\left\langle {{\bf{mulOperator}}} \right\rangle {\bf{:: = *|/}}\\\left\langle {{\bf{factor}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{identifier}}} \right\rangle {\bf{|}}\left\langle {{\bf{expression }}} \right\rangle \\\left\langle {{\bf{identifier}}} \right\rangle {\bf{:: = a }}\left| {{\bf{ b }}} \right|...{\bf{| z}}\end{array}\)

Let G be a grammar and let R be the relation containing the ordered pair \(\left( {{{\bf{w}}_{\bf{0}}}{\bf{,}}\,{{\bf{w}}_{\bf{1}}}} \right)\) if and only if \({{\bf{w}}_{\bf{1}}}\) is directly derivable from \({{\bf{w}}_{\bf{0}}}\) in G. What is the reflexive transitive closure of R?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free