Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Q18RE

Page 900

Describe how Turing machines are used to compute number-theoretic functions.

Q18SE

Page 901

Suppose that \(S\) and \(I\) are finite sets such that \(\left| S \right| = n\) and \(\left| I \right| = k\). How many different finite-state automata \(M = \left( {S,I,f,{s_0},F} \right)\) are there where the starting state \({s_0}\) and the subset \(F\) of \(S\) consisting of final states can be chosen arbitrarily

\(a)\)if the automata are deterministic\(?\)

\({\bf{b)}}\)if the automata may be nondeterministic\(?\) (Note: This includes deterministic automata.)

Q19E

Page 887

Let \({\bf{M = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}{\bf{,F}}} \right)\) be a deterministic finite-state automaton. Show that the language recognized by \({\bf{M,L}}\left( {\bf{M}} \right)\), is infinite if and only if there is a word x recognized by M with \({\bf{l}}\left( {\bf{x}} \right) \ge \left| {\bf{S}} \right|\).

Q19E

Page 898

Construct a Turing machine that computes the function \({\bf{f(n) = n - 3}}\) if \({\bf{n}} \ge {\bf{3}}\) and \({\bf{f}}\left( {\bf{n}} \right){\bf{ = 0}}\) for \({\bf{n = 0,1,2}}\) for all non-negative integers \({\bf{n}}\).

Q19E

Page 856

Let V = {S, A, B, a, b} and T = {a, b}. Determine whether G = (V, T, S, P) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P, the set of productions, is

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ aAB, A }} \to {\bf{ Bb, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ aA, A }} \to {\bf{ a, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ABa, AB }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ ABA, A }} \to {\bf{ aB, B }} \to {\bf{ ab}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ bA, A }} \to {\bf{ B, B }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{f ) S }} \to {\bf{ aA, aA }} \to {\bf{ B, B }} \to {\bf{ aA, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{g) S }} \to {\bf{ bA, A }} \to {\bf{ b, S }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{h) S }} \to {\bf{ AB, B }} \to {\bf{ aAb, aAb }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{i) S }} \to {\bf{ aA, A }} \to {\bf{ bB, B }} \to {\bf{ b, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{j) S }} \to {\bf{ A, A }} \to {\bf{ B, B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

Q19E

Page 876

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton

Q19E

Page 865

Construct a finite-state machine that determines whether the word computer has been read as the last eight characters in the input read so far, where the input can be any string of English letters.

Q19RE

Page 900

What is an unsolvable decision problem? Give an example of such a problem.

Q19SE

Page 901

Construct a deterministic finite-state automaton that is equivalent to the nondeterministic automaton with the state diagram shown here

Q1E

Page 897

Let \(T\) be the Turing machine defined by the five-tuples: \(\left( {{s_0},0,{s_1},1,R} \right),\left( {{s_0},1,{s_1},0,R} \right),\left( {{s_0},B,{s_1},0,R} \right),\left( {{s_1},0,{s_2},1,L} \right),\left( {{s_1},1,{s_1},0,R} \right)\), and \(\left( {{s_1},B,{s_2},0,L} \right)\). For each of these initial tapes, determine the final tape when \(T\) halts, assuming that \(T\) begins in initial position.

\(a)\)

\(\begin{array}{*{20}{c}} \cdots &B&B&0&0&1&1&B&B& \cdots \end{array}\)

\(b)\)

\(\begin{array}{*{20}{c}} \cdots &B&B&1&0&1&B&B&B& \cdots \end{array}\)

\(c)\)

\(\begin{array}{*{20}{c}} \cdots &B&B&1&1&B&0&1&B& \cdots \end{array}\)

\(d)\)

\(\begin{array}{*{20}{c}} \cdots &B&B&B&B&B&B&B&B& \cdots \end{array}\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks