Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Q46E

Page 877

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Q47E

Page 877

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Q48E

Page 877

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Q49E

Page 877

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Q4E

Page 875

Show that these equalities hold.

a) \({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\)

b) \({\bf{(A*)* = A*}}\) for every set of strings A.

Q4E

Page 898

What does the Turing machine described by the five-tuples \(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\),\(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,1,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\),\(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,B,}}{{\bf{s}}_{\bf{1}}}{\bf{,B,L}}} \right)\), \(\left( {{{\bf{s}}_{\bf{1}}}{\bf{,1,}}{{\bf{s}}_{\bf{2}}}{\bf{,1,R}}} \right)\)do when given

\({\bf{a)}}\)\({\bf{101}}\)as input\(?\)

\({\bf{b)}}\)an arbitrary bit string as input\(?\)

Q4E

Page 887

Determine whether 1011 belongs to each of these regular sets.

  1. \({\bf{1}}0{\bf{*}}1{\bf{*}}\)
  2. \(0{\bf{*}}\left( {10 \cup 11} \right){\bf{*}}\)
  3. \(1\left( {01} \right){\bf{*1*}}\)
  4. \(1{\bf{*}}01\left( {0 \cup 1} \right)\)
  5. \(\left( {10} \right){\bf{*}}\left( {11} \right){\bf{*}}\)
  6. \(1\left( {00} \right){\bf{*}}\left( {{\bf{11}}} \right){\bf{*}}\)
  7. \(\left( {10} \right){\bf{*}}10{\bf{1}}1\)
  8. \(\left( {1 \cup 00} \right)\left( {01 \cup 0} \right)1{\bf{*}}\)

Q4E

Page 864

Find the output generated from the input string 10001 for the finite-state machine with the state diagram in

a) Exercise 2(a).

b) Exercise 2(b).

c) Exercise 2(c).

Q4E

Page 856

Let G = (V, T, S, P) be the phrase-structure grammar with V = {0, 1, A, S}, T = {0, 1}, and set of productions P consisting of S → 1S, S → 00A, A → 0A, and A → 0.

a) Show that 111000 belongs to the language generated by G.

b) Show that 11001 does not belong to the language generated by G.

c) What is the language generated by G?

Q4RE

Page 900

a) Define a regular grammar.

b) Define a regular language.

c) Show that the set \(\left\{ {{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}\left| {{\bf{m,n = 0,1,2,}}...} \right.} \right\}\) is a regular language.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks