Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 70-77 deal with some unusual informally called self-generating sequences, produced by simple recurrence relations or rules. In particular, exercises 70-75 deal with the sequence \(\left\{ {a\left( n \right)} \right\}\) defined by \(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\) for \(n \ge 1\) and \(a\left( 0 \right) = 0\). (This sequence, as well as those in exercise 74 and 75, are defined in Douglas Hofstadter’s fascinating book Gödel, Escher, Bach ((Ho99))

Find the first 10 terms of each of the following self generating sequences:

  1. \(a\left( n \right) = n - a\left( {a\left( {a\left( {n - 1} \right)} \right)} \right)\)for \(n \ge 1\) and \(a\left( 0 \right) = 0\).
  2. \(a\left( n \right) = n - a\left( {a\left( {a\left( {a\left( {n - 1} \right)} \right)} \right)} \right)\)for \(n \ge 1\) and \(a\left( 0 \right) = 0\).
  3. \(a\left( n \right) = a\left( {n - a\left( {n - 1} \right)} \right) + a\left( {n - a\left( {n - 2} \right)} \right)\)for \(n \ge 3\) \(a\left( 1 \right) = 1\) and \(a\left( 2 \right) = 1\)

Short Answer

Expert verified
  1. The first 10 terms of the given sequence are \(0,\,1,\,1,\,2,\,3,\,4,\,4,\,5,\,5,\,6\).
  2. The first 10 terms of the given sequence are \(0,\,1,\,1,\,2,\,3,\,4,\,5,\,5,\,6,\,6\).
  3. The first 10 terms of the given sequence are \(1,\,1,\,2,\,3,\,3,\,4,\,5,\,5,\,6,\,6\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine the sequence

The sequence is defined as the set of numbers that follows a specific relation between the initial and the next number.

Consider the formula for the sequence is\(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\).

02

Finding the first 10 terms of \(a\left( n \right) = n - a\left( {a\left( {a\left( {n - 1} \right)} \right)} \right)\)

(a)

Consider the initial term as:

\(a\left( 0 \right) = 0\)

Solve for the first value as:

\(\begin{aligned}{c}a\left( 1 \right) &= 1 - a\left( {a\left( {a\left( 0 \right)} \right)} \right)\\1 - a\left( {a\left( 0 \right)} \right)\\ = 1 - a\left( 0 \right)\\ &= 1 - 0\\ &= 1\end{aligned}\)

Solve for the second value as:

\(\begin{aligned}{c}a\left( 2 \right) &= 2 - a\left( {a\left( {a\left( 1 \right)} \right)} \right)\\2 - a\left( {a\left( 1 \right)} \right)\\ &= 2 - a\left( 1 \right)\\ &= 2 - 1\\ &= 1\end{aligned}\)

Solve for the third value as:

\(\begin{aligned}{c}a\left( 3 \right) &= 3 - a\left( {a\left( {a\left( 2 \right)} \right)} \right)\\ &= 3 - a\left( {a\left( 1 \right)} \right)\\ = 3 - a\left( 1 \right)\\ &= 3 - 1\\ &= 2\end{aligned}\)

Solve for the fourth value as:

\(\begin{aligned}{c}a\left( 4 \right) &= 4 - a\left( {a\left( {a\left( 3 \right)} \right)} \right)\\4 - a\left( {a\left( 2 \right)} \right)\\ &= 4 - a\left( 1 \right)\\ &= 4 - 1\\ &= 3\end{aligned}\)

Solve for the fifth value as:

\(\begin{aligned}{c}a\left( 5 \right) = 5 - a\left( {a\left( {a\left( 4 \right)} \right)} \right)\\ = 5 - a\left( {a\left( 3 \right)} \right)\\ = 5 - a\left( 2 \right)\\ = 5 - 1\\ = 4\end{aligned}\)

Solve for the sixth value as:

\(\begin{aligned}{c}a\left( 6 \right) = 6 - a\left( {a\left( {a\left( 5 \right)} \right)} \right)\\ &= 6 - a\left( {a\left( 4 \right)} \right)\\ = 6 - a\left( 3 \right)\\ &= 6 - 2\\ &= 4\end{aligned}\)

Solve for the seventh value as:

\(\begin{aligned}{c}a\left( 7 \right) &= 7 - a\left( {a\left( {a\left( 6 \right)} \right)} \right)\\ &= 7 - a\left( {a\left( 4 \right)} \right)\\ = 7 - a\left( 3 \right)\\ &= 7 - 2\\ &= 5\end{aligned}\)

Solve for the eight value as:

\(\begin{aligned}{c}a\left( 8 \right) &= 8 - a\left( {a\left( {a\left( 7 \right)} \right)} \right)\\ &= 8 - a\left( {a\left( 5 \right)} \right)\\ &= 8 - a\left( 4 \right)\\ &= 8 - 3\\ &= 5\end{aligned}\)’

Solve for the ninth value as:

\(\begin{aligned}{c}a\left( 9 \right) &= 9 - a\left( {a\left( {a\left( 8 \right)} \right)} \right)\\ &= 9 - a\left( {a\left( 5 \right)} \right)\\ &= 9 - a\left( 4 \right)\\ &= 9 - 3\\ &= 6\end{aligned}\)

So, the first 10 terms of the given sequence are \(0,\,1,\,1,\,2,\,3,\,4,\,4,\,5,\,5,\,6\).

03

Finding the first 10 terms of \(a\left( n \right) = n - a\left( {a\left( {a\left( {n - 1} \right)} \right)} \right)\)

(b)

Consider the initial term as:

\(a\left( 0 \right) = 0\)

Solve for the first value as:

\(\begin{aligned}{c}a\left( 1 \right) &= 1 - a\left( {a\left( {a\left( {a\left( 0 \right)} \right)} \right)} \right)\\ &= 1 - a\left( {a\left( {a\left( 0 \right)} \right)} \right)\\ &= 1 - a\left( {a\left( 0 \right)} \right)\\ &= 1 - a\left( 0 \right)\\ &= 1 - 0\\ &= 1\end{aligned}\)

Solve for the second value as:

\(\begin{aligned}{c}a\left( 2 \right) &= 2 - a\left( {a\left( {a\left( {a\left( 1 \right)} \right)} \right)} \right)\\ &= 2 - a\left( {a\left( {a\left( 1 \right)} \right)} \right)\\ &= 2 - a\left( {a\left( 1 \right)} \right)\\ &= 2 - a\left( 1 \right)\\ &= 2 - 1\\ &= 1\end{aligned}\)’

Solve for the third value as:

\(\begin{aligned}{c}a\left( 3 \right) &= 3 - a\left( {a\left( {a\left( {a\left( 2 \right)} \right)} \right)} \right)\\ &= 3 - a\left( {a\left( {a\left( 1 \right)} \right)} \right)\\ &= 3 - a\left( {a\left( 1 \right)} \right)\\ &= 3 - a\left( 1 \right)\\ &= 3 - 1\\ &= 2\end{aligned}\)

Solve for the fourth value as:

\(\begin{aligned}{c}a\left( 4 \right) &= 4 - a\left( {a\left( {a\left( {a\left( 3 \right)} \right)} \right)} \right)\\ &= 4 - a\left( {a\left( {a\left( 2 \right)} \right)} \right)\\ &= 4 - a\left( {a\left( 1 \right)} \right)\\ &= 4 - a\left( 1 \right)\\ &= 4 - 1\\ &= 3\end{aligned}\)

Solve for the fifth value as:

\(\begin{aligned}{c}a\left( 5 \right) &= 5 - a\left( {a\left( {a\left( {a\left( 4 \right)} \right)} \right)} \right)\\ &= 5 - a\left( {a\left( {a\left( 3 \right)} \right)} \right)\\ &= 5 - a\left( {a\left( 2 \right)} \right)\\ &= 5 - a\left( 1 \right)\\ &= 5 - 1\\ &= 4\end{aligned}\)

Solve for the sixth value as:

\(\begin{aligned}{c}a\left( 6 \right) &= 6 - a\left( {a\left( {a\left( {a\left( 5 \right)} \right)} \right)} \right)\\ &= 6 - a\left( {a\left( {a\left( 4 \right)} \right)} \right)\\ &= 6 - a\left( {a\left( 3 \right)} \right)\\ &= 6 - a\left( 2 \right)\\ &= 6 - 1\\ &= 5\end{aligned}\)

Solve for the seventh value as:

\(\begin{aligned}{c}a\left( 7 \right) &= 7 - a\left( {a\left( {a\left( {a\left( 6 \right)} \right)} \right)} \right)\\ &= 7 - a\left( {a\left( {a\left( 5 \right)} \right)} \right)\\ &= 7 - a\left( {a\left( 4 \right)} \right)\\ &= 7 - a\left( 3 \right)\\ &= 7 - 2\\ &= 5\end{aligned}\)

Solve for the eight value as:

\(\begin{aligned}{c}a\left( 8 \right) &= 8 - a\left( {a\left( {a\left( {a\left( 7 \right)} \right)} \right)} \right)\\ &= 8 - a\left( {a\left( {a\left( 5 \right)} \right)} \right)\\ &= 8 - a\left( {a\left( 4 \right)} \right)\\ &= 8 - a\left( 3 \right)\\ &= 8 - 2\\ &= 6\end{aligned}\)

Solve for the ninth value as:

\(\begin{aligned}{c}a\left( 9 \right) &= 9 - a\left( {a\left( {a\left( 8 \right)} \right)} \right)\\ &= 9 - a\left( {a\left( 5 \right)} \right)\\ &= 9 - a\left( 4 \right)\\ &= 9 - 3\\ = 6\end{aligned}\)

So, the first 10 terms of the given sequence are \(0,\,1,\,1,\,2,\,3,\,4,\,5,\,5,\,6,\,6\).

04

Finding the first 10 terms of \(a\left( n \right) = a\left( {n - a\left( {n - 1} \right)} \right) + a\left( {n - a\left( {n - 2} \right)} \right)\)

(c)

Consider the formula for the sequence as:

\(a\left( n \right) = a\left( {n - a\left( {n - 1} \right)} \right) + a\left( {n - a\left( {n - 2} \right)} \right)\)

Consider the initial term as:

\(a\left( 1 \right) = 1\)and \(a\left( 2 \right) = 1\)

Solve for the third term as:

\(\begin{aligned}{c}a\left( 3 \right) &= a\left( {3 - a\left( 2 \right)} \right) + a\left( {3 - a\left( 1 \right)} \right)\\ &= a\left( 2 \right) + a\left( 2 \right)\\ &= 1 + 1\\ &= 2\end{aligned}\)

Solve for the fourth term as:

\(\begin{aligned}{c}a\left( 4 \right) &= a\left( {4 - a\left( 3 \right)} \right) + a\left( {4 - a\left( 2 \right)} \right)\\ &= a\left( 2 \right) + a\left( 3 \right)\\ &= 1 + 2\\ &= 3\end{aligned}\)

Solve for the fifth term as:

\(\begin{aligned}{c}a\left( 5 \right) &= a\left( {5 - a\left( 4 \right)} \right) + a\left( {5 - a\left( 3 \right)} \right)\\ &= a\left( 2 \right) + a\left( 3 \right)\\ &= 1 + 2\\ &= 3\end{aligned}\)

Solve for the sixth term as:

\(\begin{aligned}{c}a\left( 6 \right) &= a\left( {6 - a\left( 5 \right)} \right) + a\left( {6 - a\left( 4 \right)} \right)\\ &= a\left( 3 \right) + a\left( 3 \right)\\ &= 2 + 2\\ &= 4\end{aligned}\)

Solve for the seventh term as:

\(\begin{aligned}{c}a\left( 7 \right) &= a\left( {7 - a\left( 6 \right)} \right) + a\left( {7 - a\left( 5 \right)} \right)\\ &= a\left( 3 \right) + a\left( 4 \right)\\ &= 2 + 3\\ &= 5\end{aligned}\)

Solve for the eight term as:

\(\begin{aligned}{c}a\left( 8 \right) &= a\left( {8 - a\left( 7 \right)} \right) + a\left( {8 - a\left( 6 \right)} \right)\\ &= a\left( 3 \right) + a\left( 4 \right)\\ &= 2 + 3\\ &= 5\end{aligned}\)

Solve for the ninth term as:

\(\begin{aligned}{c}a\left( 9 \right) &= a\left( {9 - a\left( 8 \right)} \right) + a\left( {9 - a\left( 7 \right)} \right)\\ &= a\left( 4 \right) + a\left( 4 \right)\\ &= 3 + 3\\ &= 6\end{aligned}\)

Solve for the tenth term as:

\(\begin{aligned}{c}a\left( {10} \right) &= a\left( {10 - a\left( 9 \right)} \right) + a\left( {10 - a\left( 8 \right)} \right)\\ &= a\left( 4 \right) + a\left( 5 \right)\\ &= 3 + 3\\ &= 6\end{aligned}\)

So, the first 10 terms of the given sequence are \(1,\,1,\,2,\,3,\,3,\,4,\,5,\,5,\,6,\,6\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free