Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 70-77 deal with some unusual informally called self-generating sequences, produced by simple recurrence relations or rules. In particular, exercises 70-75 deal with the sequence \(\left\{ {a\left( n \right)} \right\}\) defined by \(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\) for \(n \ge 1\) and \(a\left( 0 \right) = 0\). (This sequence, as well as those in exercise 74 and 75, are defined in Douglas Hofstadter’s fascinating book Gödel, Escher, Bach ((Ho99))

Use the formula from exercise 72 to show that \(a\left( n \right) = a\left( {n - 1} \right)\) if \(\mu n - \left\lfloor {\mu n} \right\rfloor < 1 - \mu \) and \(a\left( n \right) = a\left( {n - 1} \right) + 1\) otherwise.

Short Answer

Expert verified

It is proved that\(a\left( n \right) = a\left( {n - 1} \right)\)for \(\mu n - \left\lfloor {\mu n} \right\rfloor < 1 - \mu \)

It is proved that \(a\left( n \right) = a\left( {n - 1} \right) + 1\) for \(\mu n - \left\lfloor {\mu n} \right\rfloor \ge 1 - \mu \)

Step by step solution

01

Formula obtained in exercise 72

Consider the formula for the sequence as:

\(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \)where\(\mu = {{\left( { - 1 + \sqrt 5 } \right)} \mathord{\left/

{\vphantom {{\left( { - 1 + \sqrt 5 } \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\)

02

Showing that \(a\left( n \right) = a\left( {n - 1} \right)\) if \(\mu n - \left\lfloor {\mu n} \right\rfloor  < 1 - \mu \)

Here we have,\(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\)when \(n \ge 0\) and \(a\left( 0 \right) = 0\)

Also, \(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) for \(\mu = \frac{{ - 1 + \sqrt 5 }}{2}\)

Consider the relation:

\(\begin{aligned}{l}\mu n - \left\lfloor {\mu n} \right\rfloor < 1 - \mu \\\mu n + \mu < 1 + \left\lfloor {\mu n} \right\rfloor \\\left\lfloor {\mu n + \mu } \right\rfloor = \left\lfloor {\mu n} \right\rfloor \end{aligned}\)

Now:

\(\begin{aligned}{c}a\left( n \right) &= \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \\ &= \left\lfloor {n\mu + \mu } \right\rfloor \\ &= \left\lfloor {n\mu } \right\rfloor \\ &= a\left( {n - 1} \right)\end{aligned}\)

So, \(a\left( n \right) = a\left( {n - 1} \right)\) for \(\mu n - \left\lfloor {\mu n} \right\rfloor < 1 - \mu \)

Hence proved.

03

Showing that \(a\left( n \right) = a\left( {n - 1} \right) + 1\) if \(\mu n - \left\lfloor {\mu n} \right\rfloor  \ge 1 - \mu \)

Consider the relation:

\(\begin{aligned}{l}\mu n - \left\lfloor {\mu n} \right\rfloor \ge 1 - \mu \\\mu n + \mu \ge 1 + \left\lfloor {\mu n} \right\rfloor \\\left\lfloor {\mu n + \mu } \right\rfloor = \left\lfloor {\mu n} \right\rfloor + 1\end{aligned}\)

Solve for the sequence as:

\(\begin{aligned}{c}a\left( n \right) &= \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \\ &= \left\lfloor {n\mu + \mu } \right\rfloor \\ &= \left\lfloor {n\mu } \right\rfloor + 1\\ &= a\left( {n - 1} \right) + 1\end{aligned}\)

So, \(a\left( n \right) = a\left( {n - 1} \right) + 1\) for \(\mu n - \left\lfloor {\mu n} \right\rfloor \ge 1 - \mu \)

Hence proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free