Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 70-77 deal with some unusual informally called self-generating sequences, produced by simple recurrence relations or rules. In particular, exercises 70-75 deal with the sequence \(\left\{ {a\left( n \right)} \right\}\) defined by \(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\) for \(n \ge 1\) and \(a\left( 0 \right) = 0\). (This sequence, as well as those in exercise 74 and 75, are defined in Douglas Hofstader’s fascinating book Gödel, Escher, Bach ((Ho99))

Prove that \(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) where \(\mu = {{\left( { - 1 + \sqrt 5 } \right)} \mathord{\left/

{\vphantom {{\left( { - 1 + \sqrt 5 } \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\).(Hint: First show for \(n > 0\) that \(\left( {\mu n - \left\lfloor {\mu n} \right\rfloor } \right) + \left( {{\mu ^2}n - \left\lfloor {{\mu ^2}n} \right\rfloor } \right) = 1\). Then show that for all real numbers \(\alpha \) with

\(0 \le \alpha < 1\)and \(\alpha \ne 1 - \mu \) that \(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\alpha + \mu } \right\rfloor = 1\), considering the cases \(0 \le \alpha < 1 - \mu \) and \(1 - \mu \le \alpha < 1\) separately.)

Short Answer

Expert verified

It is proved that \(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) for \(\mu = \frac{{ - 1 + \sqrt 5 }}{2}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Define the recurrence relation

Recursion is frequently used to build sequences whose elements have clear relationships with the previous ones. The definition of element sequences as functions of their positions contrasts with this.

A rule known as a recurrence relation is required to construct each element in terms of the elements that came before it in order to define a sequence using recursion. Additionally, there must be enough beginning items so that the recurrence relation can be applied repeatedly to calculate all following parts of the sequence.

02

Step 2: Show the proof for the equation \(\left( {\mu n - \left\lfloor {\mu n} \right\rfloor } \right) + \left( {{\mu ^2}n - \left\lfloor {{\mu ^2}n} \right\rfloor } \right) = 1\)

Here it is given that, \(a\left( n \right) = n - a\left( {a\left( {n - 1} \right)} \right)\) when \(n \ge 0\) and \(a\left( 0 \right) = 0\)

Now, given that

\(\begin{aligned}{l}\mu = \frac{{ - 1 + \sqrt 5 }}{2}\\{\mu ^2} = {\left( {\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2}\\{\mu ^2} = \frac{{{{\left( { - 1} \right)}^2} + 2\left( { - 1} \right)\left( {\sqrt 2 } \right) + {{\left( {\sqrt 5 } \right)}^2}}}{4}\end{aligned}\)

Further simplified as,

\(\begin{aligned}{c}LHS = \frac{{6 - 2\sqrt 5 }}{4}\\ = \frac{{3 - \sqrt 5 }}{2}\\ = 1 - \frac{{ - 1 + \sqrt 5 }}{2}\\ = 1 - \mu \end{aligned}\)

Now, let the function

\(\begin{aligned}{c}\left( {\mu n - \left\lfloor {\mu n} \right\rfloor } \right) + \left( {{\mu ^2}n - \left\lfloor {{\mu ^2}n} \right\rfloor } \right) = \left( {\mu n - \left\lfloor {\mu n} \right\rfloor } \right) + \left( {\left( {1 - \mu } \right)n - \left\lfloor {\left( {1 - \mu } \right)n} \right\rfloor } \right)\\ = \mu n - \left\lfloor {\mu n} \right\rfloor + n - \mu n - \left\lfloor {n - \mu n} \right\rfloor \\ = \mu n - \left\lfloor {\mu n} \right\rfloor + n - \mu n - n - \left\lfloor { - \mu n} \right\rfloor \end{aligned}\)

Further simplified as,

\(\begin{aligned}{c}\left( {\mu n - \left\lfloor {\mu n} \right\rfloor } \right) + \left( {{\mu ^2}n - \left\lfloor {{\mu ^2}n} \right\rfloor } \right) = - \left\lfloor {\mu n} \right\rfloor - \left\lfloor { - \mu n} \right\rfloor \\ = \left\lceil {\mu n} \right\rceil - \left\lfloor {\mu n} \right\rfloor \\ = 1\end{aligned}\)

03

Show that for all real numbers \(\alpha \) with \(0 \le \alpha  < 1\) and \(\alpha  \ne 1 - \mu \) that\(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor  + \left\lfloor {\alpha  + \mu } \right\rfloor  = 1\)

Let\(\alpha \)be real number such that \(0 \le \alpha < 1\).

Let the real number

\(\begin{aligned}{l}0 \le \alpha < 1 - \mu \\\mu \le \mu + \alpha < 1\\\left\lfloor {\mu + \alpha } \right\rfloor = 0\end{aligned}\)

Now, note that

\(\begin{aligned}{c}\left( {1 + \mu } \right)\left( {1 - \alpha } \right) \ge \left( {1 + \mu } \right)\mu \\ &= {\mu ^2} + \mu \\ &= \left( {1 - \mu } \right) + \mu \\ &= 1\end{aligned}\)

Now, we have, \(0 \le \alpha < 1\) and \(\left( {\mu \approx 0.618} \right)\). So it is always true that,

\(\begin{aligned}{c}\left( {1 + \mu } \right)\left( {1 - \alpha } \right) < \left( {1 + 1 - \alpha } \right)\left( {1 - \alpha } \right)\\ < 2 \cdot 1\\ < 2\end{aligned}\)

Hence, this yields to,

\(\left( {1 + \mu } \right)\left( {1 - \alpha } \right) = 1\)

So, \(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\mu + \alpha } \right\rfloor = 1\).

Now, let

\(\begin{aligned}{l}1 - \mu \le \alpha < 1\\1 \le \mu + \alpha < 1 + \mu \\\left\lfloor {\mu + \alpha } \right\rfloor = 1\end{aligned}\)

It can be seen that

\(\begin{aligned}{c}\left( {1 + \mu } \right)\left( {1 - \alpha } \right) < \left( {1 + \mu } \right)\left( {1 - \left( {1 - \mu } \right)} \right)\\ &= \left( {1 + \mu } \right)\mu \\ &= {\mu ^2} + \mu \\ &= \left( {1 - \mu } \right) + \mu \\ &= 1\end{aligned}\)

Further simplified as

\(\begin{aligned}{c}\left( {1 + \mu } \right)\left( {1 - \alpha } \right) \ge 1 \cdot 0\\ = 0\end{aligned}\)

Which implies

\(\left( {1 + \mu } \right)\left( {1 - \alpha } \right) = 0\)

So, \(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\mu + \alpha } \right\rfloor = 1\).

So, \(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\mu + \alpha } \right\rfloor = 1\) is true for real numbers \(\alpha \) with \(0 \le \alpha < 1\).

04

Check whether the \(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) satisfies the initial condition of the sequence \(a\left( n \right)\) or not

To check\(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \)satisfies the initial condition of given sequence,

Let \(n = 0\) Which yields to,

Thus, \(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) is true for base case \(n = 0\).

05

Check whether the \(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) is true for recursive part of the sequence \(a\left( n \right)\) or not

Now, for recursive part, assume that\(a\left( {n - 1} \right) = \left\lfloor {n\mu } \right\rfloor \)and let \(\alpha = n\mu - \left\lfloor {n\mu } \right\rfloor \)

Note that \(0 \le \alpha < 1\) and \(\alpha \ne 1 - \mu \)

\(\begin{aligned}{c}a\left( {a\left( {n - 1} \right)} \right) &= a\left( {\left\lfloor {n\mu } \right\rfloor } \right)\\ &= \left\lfloor {\left( {\left\lfloor {n\mu } \right\rfloor + 1} \right)\mu } \right\rfloor \\ &= \left\lfloor {\left( {n\mu - \alpha + 1} \right)\mu } \right\rfloor \end{aligned}\)

Further simplified as,

\(\begin{aligned}{c}a\left( {a\left( {n - 1} \right)} \right) &= \left\lfloor {n{\mu ^2} - \alpha \mu + \mu } \right\rfloor \\ &= \left\lfloor {1 - \alpha + \left\lfloor {n{\mu ^2}} \right\rfloor - \alpha \mu + \mu } \right\rfloor \\ &= \left\lfloor {n{\mu ^2}} \right\rfloor + \left\lfloor {1 - \alpha - \alpha \mu + \mu } \right\rfloor \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left\lfloor {n{\mu ^2}} \right\rfloor {\rm{ is integer}}} \right)\\ &= \left\lfloor {n{\mu ^2}} \right\rfloor + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor \end{aligned}\)

Further simplified as,

\(a\left( {a\left( {n - 1} \right)} \right) = n{\mu ^2} - 1 + \alpha + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor \) (1)

Next we determine an expression for \(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \)

\(\begin{aligned}{c}\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor = \left\lfloor {n\mu + \mu } \right\rfloor \\ = \left\lfloor {\alpha + \left\lfloor {\mu n} \right\rfloor + \mu } \right\rfloor \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\alpha &= n\mu - \left\lfloor {n\mu } \right\rfloor } \right)\\ = \left\lfloor {\mu n} \right\rfloor + \left\lfloor {\alpha + \mu } \right\rfloor \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left\lfloor {n\mu } \right\rfloor {\rm{ is an integer}}} \right)\end{aligned}\)

Further simplified as

\(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor = n\mu - \alpha + \left\lfloor {\alpha + \mu } \right\rfloor \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\alpha = n\mu - \left\lfloor {n\mu } \right\rfloor } \right)\) (2)

We then obtain \(a\left( n \right) = \left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor \) when

\(\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor = n - a\left( {a\left( {n - 1} \right)} \right)\)

Now, by equation (1)

\(\begin{aligned}{l}\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor &= n - \left( {n{\mu ^2} - 1 + \alpha + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor } \right)\\\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor - n + \left( {n{\mu ^2} - 1 + \alpha + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor } \right) &= 0\end{aligned}\)

Solve further as:

\(\begin{aligned}{c}\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor - n + \left( \begin{aligned}{l}n{\mu ^2} - 1 + \alpha \\ + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor \end{aligned} \right) &= \left( \begin{aligned}{l}n\mu - \alpha + \left\lfloor {\alpha + \mu } \right\rfloor - n + n{\mu ^2}\\ - 1 + \alpha + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor \end{aligned} \right)\\ &= n\mu + \left\lfloor {\alpha + \mu } \right\rfloor - n + n{\mu ^2} - 1 + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor \\ &= n\left( {{\mu ^2} + \mu - 1} \right) - 1 + \left( {\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\alpha + \mu } \right\rfloor } \right)\end{aligned}\)

Now, we have, \(\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\mu + \alpha } \right\rfloor = 1\). So, above equation becomes

\(\begin{aligned}{c}n\left( {{\mu ^2} + \mu - 1} \right) - 1 + \left( {\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\alpha + \mu } \right\rfloor } \right) &= n\left( {{\mu ^2} + \mu - 1} \right) - 1 + 1\\ &= n\left( {{\mu ^2} + \mu - 1} \right)\\ &= n\left( {1 - \mu + \mu - 1} \right)\\ &= n\left( 0 \right)\end{aligned}\)

Hence,

\(n\left( {{\mu ^2} + \mu - 1} \right) - 1 + \left( {\left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor + \left\lfloor {\alpha + \mu } \right\rfloor } \right) = 0\)

Now, by substituting the values,

\(\begin{aligned}{c}\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor &= n - \left( {n{\mu ^2} - 1 + \alpha + \left\lfloor {\left( {1 + \mu } \right)\left( {1 - \alpha } \right)} \right\rfloor } \right)\\\left\lfloor {\left( {n + 1} \right)\mu } \right\rfloor &= n - a\left( {a\left( {n - 1} \right)} \right)\\a\left( n \right) &= n - a\left( {a\left( {n - 1} \right)} \right)\end{aligned}\)

Hence proved.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free