Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Trace Algorithm 4 when it is given m = 7 , n = 10 , and b = 2 as input. That is, show all the steps Algorithm 4 uses to find210mod 7 .

Short Answer

Expert verified

The value is210mod7=2 .

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Recursive Definition

From the recursive definition,

mpower(b,n,m)={1    ifn=0mpower(b,n/2,m)2modm    ifnevenmpower(b,n/2,m)2modmbmodmmodm    otherwise

02

Determine the recursive

Evaluate the recursive definition at n = 10 , m =7 and b = 2.

210mod7=mpower(2,10,7)=mpower(2,10/2,7)2mod7=mpower(2,5,7)2mod7=mpower(2,5/2,7)2mod72mod7mod72mod7

Simplify further.

210mod7=mpower(2,2,7)2mod72mod72mod7

Determine (2,2,7).

mpower(2,2,7)=mpower(2,2/2,7)2mod7=mpower(2,1,7)2mod7=mpower(2,1/2,7)2mod72mod7mod72mod7=mpower(2,0,7)2mod72mod72mod7

Simplify further.

mpower(2,2,7)=12mod72mod72mod7=([12]mod7)2mod7=(2mod7)2mod7=22mod7

Simplify further.

mpower(2,2,7)=4mod7=4

Evaluate the found expression for (2,10,7).

210mod7=mpower(2,10,7)=mpower(2,10/2,7)2mod7=mpower(2,5,7)2mod7=mpower(2,5/2,7)2mod72mod7mod72mod7

Simplify further.

210mod7=moower(2,2,7)2mod72mod72mod7=42mod72mod72mod7=([16mod72]mod7)2mod7=([22]mod7)2mod7

Simplify further.

210mod7=(4mod7)2mod7=42mod7=16mod7=2

Therefore, the value is 210mod7=2.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free