Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 63–65 deal with values of iterated functions. Suppose that \(f\left( n \right)\) is a function from the set of real numbers, or positive real numbers, or some other set of real numbers, to the set of real numbers such that \(f\left( n \right)\) is monotonically increasing (that is, \(f\left( n \right) < f\left( m \right)\) when \(n < m\)) and \(f\left( n \right) < n\) for all n in the domain of f.) The function \({f^{\left( k \right)}}\left( n \right)\) is defined recursively by

\({f^{\left( k \right)}}\left( n \right) = \left\{ \begin{aligned}{l}n\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\f\left( {{f^{\left( {k - 1} \right)}}\left( n \right)} \right)\;\;\;{\rm{if}}\;k > 0\end{aligned} \right.\)

Furthermore, let c be a positive real number. The iterated function \(f_c^*\) is the number of iterations of f required to reduce its argument to c or less, so \(f_c^*\left( n \right)\) is the smallest nonnegative integer k such that \({f^{\left( k \right)}}\left( n \right) \le c\).

Let \(f\left( n \right) = {n \mathord{\left/

{\vphantom {n 2}} \right.

\kern-\nulldelimiterspace} 2}\). Find a formula for \({f^{\left( k \right)}}\left( n \right)\). What is the value of \(f_1^ * \left( n \right)\) when n is a positive integer?

Short Answer

Expert verified

The expression of \({f^{\left( k \right)}}\left( n \right)\) is \({f^{\left( k \right)}}\left( n \right) = \frac{n}{{{2^k}}}\), and value of \(f_1^*\left( n \right)\) is \(\left( {\log \left( n \right)} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Describe the given information and the formulas: 

It is given that,

\({f^{\left( k \right)}}\left( n \right) = \left\{ \begin{aligned}{l}n\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\f\left( {{f^{\left( {k - 1} \right)}}\left( n \right)} \right)\;\;\;{\rm{if}}\;k > 0\end{aligned} \right.\)

Where,\(f_c^*\left( n \right)\)is the smallest nonnegative integer k such that\({f^{\left( k \right)}}\left( n \right) \le c\).

02

Determine the formula for \({f^{\left( k \right)}}\left( n \right)\) and find the value of \(f_0^*\left( n \right)\)

Let \(f\left( n \right) = \frac{n}{2}\).

\(\begin{aligned}{l}{f^{\left( 0 \right)n}} = n = \frac{n}{{{2^0}}}\\{f^{\left( 1 \right)}}\left( n \right) = f\left( {{f^{\left( 0 \right)}}\left( n \right)} \right) = f\left( n \right) = \frac{n}{2} = \frac{n}{{{2^1}}}\\{f^{\left( 2 \right)}}\left( n \right) = f\left( {{f^{\left( 1 \right)}}\left( n \right)} \right) = f\left( {\frac{n}{2}} \right) = \frac{{\frac{n}{2}}}{2} = \frac{n}{4} = \frac{n}{{{2^2}}}\\{f^{\left( 3 \right)}}\left( n \right) = f\left( {{f^{\left( 2 \right)}}\left( n \right)} \right) = f\left( {\frac{n}{4}} \right) = \frac{{\frac{n}{4}}}{2} = \frac{n}{8} = \frac{n}{{{2^3}}}\\ \cdots \\{f^{\left( k \right)}}\left( n \right) = \frac{n}{{{2^k}}}\end{aligned}\)

\(f_0^*\left( n \right)\)is the smallest nonnegative integer \(k\) such that \({f^{\left( k \right)}}\left( n \right) \le 1\).

\(\begin{aligned}{c}{f^{\left( k \right)}}\left( n \right) \le 1\\\frac{n}{{{2^k}}} \le 1\\n \le {2^k}\end{aligned}\)

Take the logarithm (with base 2) of each side of the inequality.

\(\begin{aligned}{c}\log n \le \log {2^k}\\\log n \le k\end{aligned}\)

Ceiling function \(\left( x \right)\) : Smallest integer that is greater than or equal to \(x\).

\(\left( {\log \left( n \right)} \right) = k\)

The value of \(k\) is then \(f_1^*\left( n \right)\).

\(f_1^*\left( n \right) = \left( {\log \left( n \right)} \right)\)

Therefore, the expression of \({f^{\left( k \right)}}\left( n \right)\) is \({f^{\left( k \right)}}\left( n \right) = \frac{n}{{{2^k}}}\), and value of \(f_1^*\left( n \right)\) is \(\left( {\log \left( n \right)} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free