Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the largest integer n such that \({\log ^*}n = 5\). Determine the number of decimal digits in this number.

Short Answer

Expert verified

The \({2^{65536}}\) is the largest integer \(n\) for which \({\log ^ * }n = 5\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Describe the given information and the formulas:

It is given that,

\({\log ^{\left( k \right)}}n = \;\left\{ \begin{aligned}{l}n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\\log \left( {{{\log }^{\left( {k - 1} \right)}}n} \right)\;\;\;\;\;\;\;\;{\rm{if lo}}{{\rm{g}}^{\left( {k - 1} \right)}}n{\rm{ is defined and positive}}\\{\rm{undefined}}\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}{\rm{.}}\end{aligned} \right.\)

Here,\({\log ^*}n\)is the smallest nonnegative integer ksuch that\({\log ^{\left( k \right)}}n \le 1\).

02

Determine the number of decimal digits in this number

The logarithms have base 2.

In this case \({\log ^ * }n = 5\), thus \(5\) is the smallest nonnegative integer such that

\({\log ^{\left( 5 \right)}}n \le 1\)

Use the recursive definition:

\(\log \left( {{{\log }^{\left( 4 \right)}}n} \right) \le 1\)

Take the exponential with base \(2\) of each side:

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}n \le {2^1}\\ = 2\end{aligned}\)

Use the recursive definition:

\(\log \left( {{{\log }^{\left( 3 \right)}}n} \right) \le 2\)

Take the exponential with base 2 of each side:

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}n \le {2^2}\\ = 4\end{aligned}\)

Use the recursive definition:

\(\log \left( {{{\log }^{\left( 2 \right)}}n} \right) \le 4\)

Take the exponential with base \(2\) of each side:

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}n \le {2^4}\\ = 16\end{aligned}\)

Use the recursive definition:

\(\log \left( {{{\log }^{\left( 1 \right)}}n} \right) \le 16\)

Take the exponential with base \(2\) of each side:

\(\begin{aligned}{c}{\log ^{\left( 1 \right)}}n \le {2^{16}}\\ = 65536\end{aligned}\)

Use the recursive definition:

\(\log \left( {{{\log }^{\left( 0 \right)}}n} \right) \le 65536\)

Take the exponential with base \(2\) of each side:

\({\log ^{\left( 0 \right)}}n \le {2^{65536}}\)

Use the definition of the logarithm:

\(n \le {2^{65536}}\)

Therefore, \({2^{65536}}\) is the largest integer \(n\) for which \({\log ^ * }n = 5\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free