Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the value of \({\log ^*}n\) for these values of n.

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(16\)
  5. \(256\)
  6. \(65536\)
  7. \({2^{2048}}\)

Short Answer

Expert verified
  1. \({\log ^ * }2 = 1\)
  2. \({\log ^ * }4 = 2\)
  3. \({\log ^ * }8 = 3\)
  4. \({\log ^ * }16 = 3\)
  5. \({\log ^ * }256 = 4\)
  6. \({\log ^ * }65536 = 4\)
  7. \({\log ^ * }{2^{2048}} = 5\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

 Step 1: Describe the given information and formulas for logarithm

It is given that,

\({\log ^{\left( k \right)}}n = \;\left\{ \begin{aligned}{l}n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\\log \left( {{{\log }^{\left( {k - 1} \right)}}n} \right)\;\;\;\;\;\;\;\;{\rm{if lo}}{{\rm{g}}^{\left( {k - 1} \right)}}n{\rm{ is defined and positive}}\\{\rm{undefined}}\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}{\rm{.}}\end{aligned} \right.\)

Where,\({\log ^*}n\)is the smallest nonnegative integer ksuch that\({\log ^{\left( k \right)}}n \le 1\).

02

Determine the value of \({\log ^*}n\) for \(n = 2\)(a)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}2 = 2\\{\log ^{\left( 1 \right)}}2 = \log \left( {{{\log }^{\left( 0 \right)}}2} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }2 = 1\)

Therefore, the value of \({\log ^ * }2\) is \(1\).

03

Determine the value of \({\log ^*}n\) for \(n = 4\)(b)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}4 = 4\\{\log ^{\left( 1 \right)}}4 = \log \left( {{{\log }^{\left( 0 \right)}}4} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}4 = \log \left( {{{\log }^{\left( 1 \right)}}4} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }4 = 2\)

Therefore, the value of \({\log ^ * }4\) is \(2\).

04

Determine the value of \({\log ^*}n\) for \(n = 8\)(c)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}8 = 8\\{\log ^{\left( 1 \right)}}8 = \log \left( {{{\log }^{\left( 0 \right)}}8} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}8 = \log \left( {{{\log }^{\left( 1 \right)}}8} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}8 = \log \left( {{{\log }^{\left( 2 \right)}}8} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }8 = 3\)

Therefore, the value of \({\log ^ * }8\) is \(3\).

05

Determine the value of \({\log ^*}n\) for \(n = 16\)(d)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}16 = 16\\{\log ^{\left( 1 \right)}}16 = \log \left( {{{\log }^{\left( 0 \right)}}16} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}16 = \log \left( {{{\log }^{\left( 1 \right)}}16} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}16 = \log \left( {{{\log }^{\left( 2 \right)}}16} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }16 = 3\)

Therefore, the value of \({\log ^ * }16\) is \(3\).

06

Determine the value of \({\log ^*}n\) for \(n = 256\)(e)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}256 = 256\\{\log ^{\left( 1 \right)}}256 = \log \left( {{{\log }^{\left( 0 \right)}}256} \right)\\ = \log \left( {256} \right)\\ = 8\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}256 = \log \left( {{{\log }^{\left( 1 \right)}}256} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}256 = \log \left( {{{\log }^{\left( 2 \right)}}256} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}256 = \log \left( {{{\log }^{\left( 3 \right)}}256} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }256 = 4\)

Therefore, the value of \({\log ^ * }256\) is \(4\).

07

Determine the value of \({\log ^*}n\) for \(n = 65536\)(f)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}65536 = 65536\\{\log ^{\left( 1 \right)}}65536 = \log \left( {{{\log }^{\left( 0 \right)}}65536} \right)\\ = \log \left( {65536} \right)\\ = 16\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}65536 = \log \left( {{{\log }^{\left( 1 \right)}}65536} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}65536 = \log \left( {{{\log }^{\left( 2 \right)}}65536} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}65536 = \log \left( {{{\log }^{\left( 3 \right)}}65536} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }65536 = 4\)

Therefore, the value of \({\log ^ * }65536\) is \(4\).

08

Determine the value of \({\log ^*}n\) for \(n = {2^{2048}}\)(g)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}{2^{2048}} = {2^{2048}}\\{\log ^{\left( 1 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 0 \right)}}{2^{2048}}} \right)\\ = \log \left( {{2^{2048}}} \right)\\ = 2048\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 1 \right)}}{2^{2048}}} \right)\\ = \log \left( {2048} \right)\\ = 11\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 2 \right)}}{2^{2048}}} \right)\\ = \log \left( {11} \right)\\ \approx 3.4594\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 3 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {11} \right)} \right)\\ \approx 1.7905\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 5 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 4 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {\log \left( {11} \right)} \right)} \right)\\ \approx 0.8404\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }{2^{2048}} = 5\)

Therefore, the value of \({\log ^ * }{2^{2048}}\) is \(5\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

LetE(n) be the statement that in a triangulation of a simple polygon with sides, at least one of the triangles in the triangulation has two sides bordering the exterior of the polygon.

a) Explain where a proof using strong induction thatE(n) is true for all integersnโ‰ฅ4 runs into difficulties.

b) Show that we can prove thatE(n) is true for all integersnโ‰ฅ4 by proving by strong induction the stronger statementT(n) for all integers nโ‰ฅ4, which states that in every triangulation of a simple polygon, at least two of the triangles in the triangulation have two sides bordering the exterior of the polygon.

Prove that if h > - 1 , then 1+nhโ‰ค(1+h)nfor all nonnegative integers n. This is called Bernoulliโ€™s inequality.

Devise a recursive algorithm to find a2na, where a is a real number and n is a positive integer. [Hint: Use the equalitya2n+1=(a2n)2 .]

Prove that Algorithm 3 for computing gcd (a,b) when a and b are positive integers with a < b is correct.

In the proof of Lemma 1 we mentioned that many incorrect methods for finding a vertex such that the line segment is an interior diagonal of have been published. This exercise presents some of the incorrect ways has been chosen in these proofs. Show, by considering one of the polygons drawn here, that for each of these choices of , the line segment is not necessarily an interior diagonal of .

a) p is the vertex of P such that the angleโˆ abpis smallest.

b) p is the vertex of P with the least -coordinate (other than ).

c) p is the vertex of P that is closest to .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free