Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the value of \({\log ^*}n\) for these values of n.

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(16\)
  5. \(256\)
  6. \(65536\)
  7. \({2^{2048}}\)

Short Answer

Expert verified
  1. \({\log ^ * }2 = 1\)
  2. \({\log ^ * }4 = 2\)
  3. \({\log ^ * }8 = 3\)
  4. \({\log ^ * }16 = 3\)
  5. \({\log ^ * }256 = 4\)
  6. \({\log ^ * }65536 = 4\)
  7. \({\log ^ * }{2^{2048}} = 5\)

Step by step solution

01

 Step 1: Describe the given information and formulas for logarithm

It is given that,

\({\log ^{\left( k \right)}}n = \;\left\{ \begin{aligned}{l}n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\\log \left( {{{\log }^{\left( {k - 1} \right)}}n} \right)\;\;\;\;\;\;\;\;{\rm{if lo}}{{\rm{g}}^{\left( {k - 1} \right)}}n{\rm{ is defined and positive}}\\{\rm{undefined}}\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}{\rm{.}}\end{aligned} \right.\)

Where,\({\log ^*}n\)is the smallest nonnegative integer ksuch that\({\log ^{\left( k \right)}}n \le 1\).

02

Determine the value of \({\log ^*}n\) for \(n = 2\)(a)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}2 = 2\\{\log ^{\left( 1 \right)}}2 = \log \left( {{{\log }^{\left( 0 \right)}}2} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }2 = 1\)

Therefore, the value of \({\log ^ * }2\) is \(1\).

03

Determine the value of \({\log ^*}n\) for \(n = 4\)(b)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}4 = 4\\{\log ^{\left( 1 \right)}}4 = \log \left( {{{\log }^{\left( 0 \right)}}4} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}4 = \log \left( {{{\log }^{\left( 1 \right)}}4} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }4 = 2\)

Therefore, the value of \({\log ^ * }4\) is \(2\).

04

Determine the value of \({\log ^*}n\) for \(n = 8\)(c)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}8 = 8\\{\log ^{\left( 1 \right)}}8 = \log \left( {{{\log }^{\left( 0 \right)}}8} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}8 = \log \left( {{{\log }^{\left( 1 \right)}}8} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}8 = \log \left( {{{\log }^{\left( 2 \right)}}8} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }8 = 3\)

Therefore, the value of \({\log ^ * }8\) is \(3\).

05

Determine the value of \({\log ^*}n\) for \(n = 16\)(d)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}16 = 16\\{\log ^{\left( 1 \right)}}16 = \log \left( {{{\log }^{\left( 0 \right)}}16} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}16 = \log \left( {{{\log }^{\left( 1 \right)}}16} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}16 = \log \left( {{{\log }^{\left( 2 \right)}}16} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }16 = 3\)

Therefore, the value of \({\log ^ * }16\) is \(3\).

06

Determine the value of \({\log ^*}n\) for \(n = 256\)(e)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}256 = 256\\{\log ^{\left( 1 \right)}}256 = \log \left( {{{\log }^{\left( 0 \right)}}256} \right)\\ = \log \left( {256} \right)\\ = 8\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}256 = \log \left( {{{\log }^{\left( 1 \right)}}256} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}256 = \log \left( {{{\log }^{\left( 2 \right)}}256} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}256 = \log \left( {{{\log }^{\left( 3 \right)}}256} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }256 = 4\)

Therefore, the value of \({\log ^ * }256\) is \(4\).

07

Determine the value of \({\log ^*}n\) for \(n = 65536\)(f)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}65536 = 65536\\{\log ^{\left( 1 \right)}}65536 = \log \left( {{{\log }^{\left( 0 \right)}}65536} \right)\\ = \log \left( {65536} \right)\\ = 16\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}65536 = \log \left( {{{\log }^{\left( 1 \right)}}65536} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}65536 = \log \left( {{{\log }^{\left( 2 \right)}}65536} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}65536 = \log \left( {{{\log }^{\left( 3 \right)}}65536} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }65536 = 4\)

Therefore, the value of \({\log ^ * }65536\) is \(4\).

08

Determine the value of \({\log ^*}n\) for \(n = {2^{2048}}\)(g)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}{2^{2048}} = {2^{2048}}\\{\log ^{\left( 1 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 0 \right)}}{2^{2048}}} \right)\\ = \log \left( {{2^{2048}}} \right)\\ = 2048\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 1 \right)}}{2^{2048}}} \right)\\ = \log \left( {2048} \right)\\ = 11\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 2 \right)}}{2^{2048}}} \right)\\ = \log \left( {11} \right)\\ \approx 3.4594\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 3 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {11} \right)} \right)\\ \approx 1.7905\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 5 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 4 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {\log \left( {11} \right)} \right)} \right)\\ \approx 0.8404\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }{2^{2048}} = 5\)

Therefore, the value of \({\log ^ * }{2^{2048}}\) is \(5\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free