Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the value of \({\log ^*}n\) for these values of n.

  1. \(2\)
  2. \(4\)
  3. \(8\)
  4. \(16\)
  5. \(256\)
  6. \(65536\)
  7. \({2^{2048}}\)

Short Answer

Expert verified
  1. \({\log ^ * }2 = 1\)
  2. \({\log ^ * }4 = 2\)
  3. \({\log ^ * }8 = 3\)
  4. \({\log ^ * }16 = 3\)
  5. \({\log ^ * }256 = 4\)
  6. \({\log ^ * }65536 = 4\)
  7. \({\log ^ * }{2^{2048}} = 5\)

Step by step solution

01

Describe the given information and formulas for logarithm

It is given that,

\({\log ^{\left( k \right)}}n = \;\left\{ \begin{aligned}{l}n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;k = 0\\\log \left( {{{\log }^{\left( {k - 1} \right)}}n} \right)\;\;\;\;\;\;\;\;{\rm{if lo}}{{\rm{g}}^{\left( {k - 1} \right)}}n{\rm{ is defined and positive}}\\{\rm{undefined}}\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}{\rm{.}}\end{aligned} \right.\)

Where,\({\log ^*}n\)is the smallest nonnegative integer ksuch that\({\log ^{\left( k \right)}}n \le 1\).

02

Determine the value of \({\log ^*}n\) for \(n = 2\)(a)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}2 = 2\\{\log ^{\left( 1 \right)}}2 = \log \left( {{{\log }^{\left( 0 \right)}}2} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }2 = 1\)

Therefore, the value of \({\log ^ * }2\) is \(1\).

03

Determine the value of \({\log ^*}n\) for \(n = 4\)(b)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}4 = 4\\{\log ^{\left( 1 \right)}}4 = \log \left( {{{\log }^{\left( 0 \right)}}4} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}4 = \log \left( {{{\log }^{\left( 1 \right)}}4} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }4 = 2\)

Therefore, the value of \({\log ^ * }4\) is \(2\).

04

Determine the value of \({\log ^*}n\) for \(n = 8\)(c)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}8 = 8\\{\log ^{\left( 1 \right)}}8 = \log \left( {{{\log }^{\left( 0 \right)}}8} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}8 = \log \left( {{{\log }^{\left( 1 \right)}}8} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}8 = \log \left( {{{\log }^{\left( 2 \right)}}8} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }8 = 3\)

Therefore, the value of \({\log ^ * }8\) is \(3\).

05

Determine the value of \({\log ^*}n\) for \(n = 16\)(d)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}16 = 16\\{\log ^{\left( 1 \right)}}16 = \log \left( {{{\log }^{\left( 0 \right)}}16} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}16 = \log \left( {{{\log }^{\left( 1 \right)}}16} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}16 = \log \left( {{{\log }^{\left( 2 \right)}}16} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }16 = 3\)

Therefore, the value of \({\log ^ * }16\) is \(3\).

06

Determine the value of \({\log ^*}n\) for \(n = 256\)(e)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}256 = 256\\{\log ^{\left( 1 \right)}}256 = \log \left( {{{\log }^{\left( 0 \right)}}256} \right)\\ = \log \left( {256} \right)\\ = 8\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}256 = \log \left( {{{\log }^{\left( 1 \right)}}256} \right)\\ = \log \left( 8 \right)\\ = 3\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}256 = \log \left( {{{\log }^{\left( 2 \right)}}256} \right)\\ = \log \left( 3 \right)\\ \approx 1.5850\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}256 = \log \left( {{{\log }^{\left( 3 \right)}}256} \right)\\ = \log \left( {\log \left( 3 \right)} \right)\\ \approx 0.6644\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }256 = 4\)

Therefore, the value of \({\log ^ * }256\) is \(4\).

07

Determine the value of \({\log ^*}n\) for \(n = 65536\)(f)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}65536 = 65536\\{\log ^{\left( 1 \right)}}65536 = \log \left( {{{\log }^{\left( 0 \right)}}65536} \right)\\ = \log \left( {65536} \right)\\ = 16\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}65536 = \log \left( {{{\log }^{\left( 1 \right)}}65536} \right)\\ = \log \left( {16} \right)\\ = 4\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}65536 = \log \left( {{{\log }^{\left( 2 \right)}}65536} \right)\\ = \log \left( 4 \right)\\ = 2\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}65536 = \log \left( {{{\log }^{\left( 3 \right)}}65536} \right)\\ = \log \left( 2 \right)\\ = 1\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }65536 = 4\)

Therefore, the value of \({\log ^ * }65536\) is \(4\).

08

Determine the value of \({\log ^*}n\) for \(n = {2^{2048}}\)(g)

Determine \({\log ^{\left( k \right)}}n\) for increasing values of \(k\) until a value of at most \(1\) is obtained. Use base \(2\) for the logarithm.

\(\begin{aligned}{c}{\log ^{\left( 0 \right)}}{2^{2048}} = {2^{2048}}\\{\log ^{\left( 1 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 0 \right)}}{2^{2048}}} \right)\\ = \log \left( {{2^{2048}}} \right)\\ = 2048\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 2 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 1 \right)}}{2^{2048}}} \right)\\ = \log \left( {2048} \right)\\ = 11\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 3 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 2 \right)}}{2^{2048}}} \right)\\ = \log \left( {11} \right)\\ \approx 3.4594\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 4 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 3 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {11} \right)} \right)\\ \approx 1.7905\end{aligned}\)

And,

\(\begin{aligned}{c}{\log ^{\left( 5 \right)}}{2^{2048}} = \log \left( {{{\log }^{\left( 4 \right)}}{2^{2048}}} \right)\\ = \log \left( {\log \left( {\log \left( {11} \right)} \right)} \right)\\ \approx 0.8404\end{aligned}\)

\({\log ^*}n\)is the smallest nonnegative integer ksuch that \({\log ^{\left( k \right)}}n \le 1\).

\({\log ^ * }{2^{2048}} = 5\)

Therefore, the value of \({\log ^ * }{2^{2048}}\) is \(5\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that is a simple polygon with vertices v1,v2,...,vnlisted so that consecutive vertices are connected by an edge, and v1and vnare connected by an edge. A vertex viis called an ear if the line segment connecting the two vertices adjacent tolocalid="1668577988053" viis an interior diagonal of the simple polygon. Two earsvi and are called nonoverlapping if the interiors of the triangles with verticesvi and its two adjacent vertices andvi and its two adjacent vertices do not intersect. Prove that every simple polygon with at least four vertices has at least two nonoverlapping ears.

(a) Determine which amounts of postage can be formed using just 3-cent and 10-cent stamps.

(b) Prove your answer to (a) using the principle of mathematical induction. Be sure to state explicitly your inductive hypothesis in the inductive step.

(c) Prove your answer to (a) using strong induction. How does the inductive hypothesis in this proof differ from that in the inductive hypothesis for a proof using mathematical induction?

Prove that for every positive integer n,

1.2.3+2.3.4+โ€ฆ+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4

How does the number of multiplications used by the algorithm in Exercise 24 compare to the number of multiplications used by Algorithm 2 to evaluatea2n ?

Let P(n) be the statement that1+14+19+โ€ฆ+1n2<2โˆ’1n , where n is an integer greater than 1.

a) What is the statement P(2)?

b) Show that P(2) is true, completing the basis step of the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step.

f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free