In the inductive step, we need to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.
\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.
In the inductive hypothesis, we assume that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).
\[\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3k - 2} \right) \cdot \left( {3k + 1} \right)}} = \frac{k}{{3k + 1}}\] …. (i)
Now we must have to show that\(P\left( {k + 1} \right)\)is also true.
Therefore replacing\(k\)with\(k + 1\)in the statement.
\[\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3\left( {k + 1} \right) - 2} \right) \cdot \left( {3\left( {k + 1} \right) + 1} \right)}} = \frac{{\left( {k + 1} \right)}}{{3\left( {k + 1} \right) + 1}}\]
Now, adding\[\frac{1}{{\left( {3\left( {k + 1} \right) - 2} \right) \cdot \left( {3\left( {k + 1} \right) + 1} \right)}}\]in both sides of the equation (i) or inductive hypothesis.
\[\begin{array}{c}\left\{ \begin{array}{l}\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3k - 2} \right) \cdot \left( {3k + 1} \right)}}\\ + \frac{1}{{\left( {3\left( {k + 1} \right) - 2} \right) \cdot \left( {3\left( {k + 1} \right) + 1} \right)}}\end{array} \right\} = \frac{k}{{3k + 1}} + \frac{1}{{\left( {3\left( {k + 1} \right) - 2} \right) \cdot \left( {3\left( {k + 1} \right) + 1} \right)}}\\ = \frac{k}{{3k + 1}} + \frac{1}{{\left( {3k + 1} \right) \cdot \left( {3k + 4} \right)}}\\ = \frac{{k\left( {3k + 4} \right) + 1}}{{\left( {3k + 1} \right) \cdot \left( {3k + 4} \right)}}\\ = \frac{{3{k^2} + 4k + 1}}{{\left( {3k + 1} \right) \cdot \left( {3k + 4} \right)}}\end{array}\]
Solve further as:
\[\begin{array}{c}\left\{ \begin{array}{l}\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3k - 2} \right) \cdot \left( {3k + 1} \right)}}\\ + \frac{1}{{\left( {3\left( {k + 1} \right) - 2} \right) \cdot \left( {3\left( {k + 1} \right) + 1} \right)}}\end{array} \right\} = \frac{{\left( {3k + 1} \right)\left( {k + 1} \right)}}{{\left( {3k + 1} \right) \cdot \left( {3k + 4} \right)}}\\ = \frac{{\left( {k + 1} \right)}}{{\left( {3k + 4} \right)}}\\ = \frac{{\left( {k + 1} \right)}}{{3\left( {k + 1} \right) + 1}}\end{array}\]
From the above, we can see that\(P\left( {k + 1} \right)\)is also true.
Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This
Completes the inductive step.
Hence it is proved that\[\frac{1}{{1 \cdot 4}} + \frac{1}{{4 \cdot 7}} + ... + \frac{1}{{\left( {3n - 2} \right) \cdot \left( {3n + 1} \right)}} = \frac{n}{{3n + 1}}\]whenever\(n\)is a positive integer.