Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use mathematical induction to show that

\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2n - 1} \right) \cdot \left( {2n + 1} \right)}} = \frac{n}{{2n + 1}}\)

whenever nis a positive integer.

Short Answer

Expert verified

It is shown that\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2n - 1} \right) \cdot \left( {2n + 1} \right)}} = \frac{n}{{2n + 1}}\)whenever\(n\)is a positive integer.

Step by step solution

01

Principle of Mathematical Induction

Consider the propositional function\(P\left( n \right)\). Consider two actions to prove that\(P\left( n \right)\) evaluates to accurate for all set of positive integers\(n\).

Consider the first basic step is to confirm that\(P\left( 1 \right)\)true.

Consider the inductive step is to demonstrate that for any positive integer k the conditional statement\(P\left( k \right) \to P\left( {k + 1} \right)\)is true.

02

Prove the basis step

Given statement is:

\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2n - 1} \right) \cdot \left( {2n + 1} \right)}} = \frac{n}{{2n + 1}}\)

In the basis step, we need to prove that\(P\left( 1 \right)\)is true.

For finding statement\(P\left( 1 \right)\)substituting\(1\)for\(n\)in the statement.

Therefore, the statement\(P\left( 1 \right)\)is:

\(\begin{array}{c}\frac{1}{{1 \cdot 3}} = \frac{1}{{2\left( 1 \right) + 1}}\\\frac{1}{3} = \frac{1}{3}\end{array}\)

Therefore, the statement \(P\left( 1 \right)\) is true this is also known as the basis step of the proof.

03

Prove the Inductive step

In the inductive step, we need to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is,

\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

In the inductive hypothesis, we assume that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\)

That is

\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2k - 1} \right) \cdot \left( {2k + 1} \right)}} = \frac{k}{{2k + 1}}\)...(i)

Now we must have to show that\(P\left( {k + 1} \right)\)is also true.

Therefore replacing\(k\)with\(k + 1\)in the statement

\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2\left( {k + 1} \right) - 1} \right) \cdot \left( {2\left( {k + 1} \right) + 1} \right)}} = \frac{{\left( {k + 1} \right)}}{{2\left( {k + 1} \right) + 1}}\)

Now, adding\(\frac{1}{{\left( {2\left( {k + 1} \right) - 1} \right) \cdot \left( {2\left( {k + 1} \right) + 1} \right)}}\)in both sides of the equation (i) or inductive hypothesis.

\(\begin{array}{c}\left\{ \begin{array}{l}\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2k - 1} \right) \cdot \left( {2k + 1} \right)}}\\ + \frac{1}{{\left( {2\left( {k + 1} \right) - 1} \right) \cdot \left( {2\left( {k + 1} \right) + 1} \right)}}\end{array} \right\} = \frac{k}{{2k + 1}} + \frac{1}{{\left( {2\left( {k + 1} \right) - 1} \right) \cdot \left( {2\left( {k + 1} \right) + 1} \right)}}\\ = \frac{k}{{2k + 1}} + \frac{1}{{\left( {2k + 1} \right) \cdot \left( {2k + 3} \right)}}\\ = \frac{{k(2k + 3) + 1}}{{\left( {2k + 1} \right) \cdot \left( {2k + 3} \right)}}\\ = \frac{{2{k^2} + 3k + 1}}{{\left( {2k + 1} \right) \cdot \left( {2k + 3} \right)}}\end{array}\)

Solve further as:

\(\begin{array}{c}\left\{ \begin{array}{l}\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2k - 1} \right) \cdot \left( {2k + 1} \right)}}\\ + \frac{1}{{\left( {2\left( {k + 1} \right) - 1} \right) \cdot \left( {2\left( {k + 1} \right) + 1} \right)}}\end{array} \right\} = = \frac{{\left( {k + 1} \right)\left( {2k + 1} \right)}}{{\left( {2k + 1} \right) \cdot \left( {2k + 3} \right)}}\\ = \frac{{\left( {k + 1} \right)}}{{\left( {2k + 3} \right)}}\\ = \frac{{\left( {k + 1} \right)}}{{2\left( {k + 1} \right) + 1}}\end{array}\)

From the above, it is clear that\(P\left( {k + 1} \right)\)is also true

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This completes the inductive step.

Hence, it is proved that\(\frac{1}{{1 \cdot 3}} + \frac{1}{{3 \cdot 5}} + ... + \frac{1}{{\left( {2n - 1} \right) \cdot \left( {2n + 1} \right)}} = \frac{n}{{2n + 1}}\)whenever\(n\)is a positive integer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free