Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A unit or Egyptian fraction of the form \({1 \mathord{\left/

{\vphantom {1 n}} \right.

\kern-\nulldelimiterspace} n}\), where \(n\) is a positive integer. In this exercise, we will use strong induction to show that a greedy algorithm can be used to express every rational number \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\)with \(0 < {p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q} < 1\)as a sum of distinct unit fractions. At each step of the algorithm, we find the smallest positive integer \(n\) such that \({1 \mathord{\left/

{\vphantom {1 n}} \right.

\kern-\nulldelimiterspace} n}\)can be added to the sum without exceeding \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\). For example, to express \({5 \mathord{\left/

{\vphantom {5 7}} \right.

\kern-\nulldelimiterspace} 7}\), we first start the sum with \({1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}\). Because \({5 \mathord{\left/

{\vphantom {5 7}} \right.

\kern-\nulldelimiterspace} 7} - {1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2} = {3 \mathord{\left/

{\vphantom {3 {14}}} \right.

\kern-\nulldelimiterspace} {14}}\)we add \({1 \mathord{\left/

{\vphantom {1 5}} \right.

\kern-\nulldelimiterspace} 5}\)to the sum because 5 is the smallest positive integer \(k\)such that \({1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k} < {3 \mathord{\left/

{\vphantom {3 {14}}} \right.

\kern-\nulldelimiterspace} {14}}\). Because \({3 \mathord{\left/

{\vphantom {3 {14}}} \right.

\kern-\nulldelimiterspace} {14}} - {1 \mathord{\left/

{\vphantom {1 5}} \right.

\kern-\nulldelimiterspace} 5} = {1 \mathord{\left/

{\vphantom {1 {70}}} \right.

\kern-\nulldelimiterspace} {70}}\), the algorithm terminates showing that \({{{5 \mathord{\left/

{\vphantom {5 7}} \right.

\kern-\nulldelimiterspace} 7} = 1} \mathord{\left/

{\vphantom {{{5 \mathord{\left/

{\vphantom {5 7}} \right.

\kern-\nulldelimiterspace} 7} = 1} 2}} \right.

\kern-\nulldelimiterspace} 2} + {1 \mathord{\left/

{\vphantom {1 5}} \right.

\kern-\nulldelimiterspace} 5} + {1 \mathord{\left/

{\vphantom {1 {70}}} \right.

\kern-\nulldelimiterspace} {70}}\). Let \(T\left( p \right)\) be the statement that this algorithm terminates for all rational numbers \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\)with \(0 < {p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q} < 1\). We will prove that the algorithm always terminates by showing that \(T\left( p \right)\) holds for all positive integers \(p\).

  1. Show that the basis step \(T\left( 1 \right)\) holds.
  2. Suppose that \(T\left( k \right)\) holds for positive integers \(k\) with \(k < p\). That is, assume that the algorithm terminates for all rational numbers \({k \mathord{\left/
  3. {\vphantom {k r}} \right.
  4. \kern-\nulldelimiterspace} r}\), where \(1 \le k < p\). Show that if we start with \({p \mathord{\left/
  5. {\vphantom {p q}} \right.
  6. \kern-\nulldelimiterspace} q}\)and the fraction \({1 \mathord{\left/
  7. {\vphantom {1 n}} \right.
  8. \kern-\nulldelimiterspace} n}\)is selected in the first step of the algorithm then \({p \mathord{\left/
  9. {\vphantom {p q}} \right.
  10. \kern-\nulldelimiterspace} q} = {{p'} \mathord{\left/
  11. {\vphantom {{p'} {q' + {1 \mathord{\left/
  12. {\vphantom {1 n}} \right.
  13. \kern-\nulldelimiterspace} n}}}} \right.
  14. \kern-\nulldelimiterspace} {q' + {1 \mathord{\left/
  15. {\vphantom {1 n}} \right.
  16. \kern-\nulldelimiterspace} n}}}\), where \(\,p' = np - q\) and \(\,q' = nq\). After considering the case where \({p \mathord{\left/
  17. {\vphantom {p q}} \right.
  18. \kern-\nulldelimiterspace} q} = {1 \mathord{\left/
  19. {\vphantom {1 n}} \right.
  20. \kern-\nulldelimiterspace} n}\), use the inductive hypothesis to show that greedy algorithm when it begins with \({{p'} \mathord{\left/
  21. {\vphantom {{p'} {q'}}} \right.
  22. \kern-\nulldelimiterspace} {q'}}\)and complete the inductive step.

The McCarthy 91 function (defined by John McCarthy, one of the founders of the artificial intelligence) is defined using the rule

\(M\left( n \right) = \left\{ \begin{aligned}{l}n - 10,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,n > 100\\M\left( {M\left( {n + 11} \right)} \right),\,\,\,if\,n \ge 100\end{aligned} \right.\)

for all positive integer \(n\).

Short Answer

Expert verified

(a) It is proved that\(T\left( 1 \right)\) holds.

(b) It is proved that \(T\left( q \right)\) is true.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

To recall the concepts and definition

The McCarthy 91 function is defined using the rule:

\(M\left( n \right) = \left\{ \begin{aligned}{l}n - 10,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,n > 100\\M\left( {M\left( {n + 11} \right)} \right),\,\,\,\,\,if\,\,n \le 100\end{aligned} \right.\)

Let \(T\left( p \right)\)= algorithm terminates for all rational numbers \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\)with \(0 < {p \mathord{\left/

{\vphantom {p {q < 1}}} \right.

\kern-\nulldelimiterspace} {q < 1}}\).

At each step of the algorithm, we determine the smallest \(n\) such that \(\frac{1}{n}\) can be added to the sum without exceeding \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\).

02

(a) Step 2: To prove the result using principle of mathematical induction

Let \(T\left( 1 \right)\)= algorithm terminates for all rational numbers \({1 \mathord{\left/

{\vphantom {1 q}} \right.

\kern-\nulldelimiterspace} q}\)with \(0 < {1 \mathord{\left/

{\vphantom {1 {q < 1}}} \right.

\kern-\nulldelimiterspace} {q < 1}}\).

In the first step, the algorithm determines the value \(q\) such that \({1 \mathord{\left/

{\vphantom {1 q}} \right.

\kern-\nulldelimiterspace} q} = \frac{1}{q}\).

Thus, the algorithm will terminate after the first step.

Hence, \(T\left( 1 \right)\) holds.

03

(b) Step 3: To prove the result using principle of mathematical induction

Let \(T\left( k \right)\) be true for all positive integers \(k\) with \(k < p\).

Let \(q\) be a positive integer.

We first use the algorithm to determine the smallest \(n\) such that \(\frac{1}{n}\) can be added to \(\frac{p}{q}\) without exceeding \({p \mathord{\left/

{\vphantom {p q}} \right.

\kern-\nulldelimiterspace} q}\).

Let \({{p'} \mathord{\left/

{\vphantom {{p'} {q'}}} \right.

\kern-\nulldelimiterspace} {q'}} \ne 0\).

Therefore,

\(\begin{aligned}{c}\frac{{p'}}{{q'}} &= \frac{p}{q} - \frac{1}{n}\\ &= \frac{{pn - q}}{{qn}}\end{aligned}\)

\(\therefore \frac{{p'}}{{q'}} = \frac{{pn - q}}{{qn}}\)

Now, we have,

\(\begin{aligned}{l}\frac{p}{q} < \frac{1}{{n - 1}}\\ \Rightarrow p\left( {n - 1} \right) < q\\ \Rightarrow pn - p < q\end{aligned}\)

and \(p' = pn - q < p\).

Since \(p' < p\), we can use the fact that \(T\left( {p'} \right)\) is true.

Therefore, the algorithm terminates for \(\frac{{p'}}{{q'}}\).

Thus, the algorithm also terminates for \(\frac{p}{q}\).

Hence, \(T\left( q \right)\) is true.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free