Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(n\) is a positive integer, then

\(\sum\limits_{j = 1}^n {\left( {2j - 1} \right)} \left( {\sum\limits_{k = 1}^n {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = n{{\left( {n + 1} \right)} \mathord{\left/

{\vphantom {{\left( {n + 1} \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\).

Short Answer

Expert verified

By mathematical induction, the result \(P\left( n \right)\) is true for all positive integers \(n\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

To recall the concepts and principles

Mathematical Induction: The mathematical induction is defined as follows:

Step 1 (Base step): In this step, to prove that the statement is true for n=1.

Step 2(Inductive step): In this case, if the statement is true for nth iteration, then to prove it is also true for (n+1)st iteration.

02

To prove the result using principle of mathematical induction

Let the \(P\left( n \right)\) be the statement: \(\sum\limits_{j = 1}^n {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^n {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = n{{\left( {n + 1} \right)} \mathord{\left/

{\vphantom {{\left( {n + 1} \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\).

Then by principle of mathematical induction,

For \(n = 1\): L.H.S is given by,

\(\begin{aligned}{c}\sum\limits_{j = 1}^n {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^n {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = \sum\limits_{j = 1}^1 {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^1 {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right)\\ = \left( {2\left( 1 \right) - 1} \right)\left( {\sum\limits_{k = 1}^1 {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right)\\ = \left( {2 - 1} \right)\left( {\frac{1}{1}} \right)\\ = 1\end{aligned}\)

\(\therefore \sum\limits_{j = 1}^n {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^n {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = 1\) …… (1)

And R.H.S is given by,

\(\begin{aligned}{c}n \cdot \frac{{\left( {n + 1} \right)}}{2} = 1 \cdot \frac{{\left( {1 + 1} \right)}}{2}\\ = \frac{2}{2}\\ = 1\end{aligned}\)

\(\therefore n \cdot \frac{{\left( {n + 1} \right)}}{2} = 1\) …… (2)

Thus, from (1) and (2), it gives,

\(\sum\limits_{j = 1}^n {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^n {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = n{{\left( {n + 1} \right)} \mathord{\left/

{\vphantom {{\left( {n + 1} \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\)

Thus, the result is true for \(n = 1\).

Hence, \(P\left( 1 \right)\) is true.

Now, consider the result is true for \(n = m\).

It means, \(\sum\limits_{j = 1}^m {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^m {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = m{{\left( {m + 1} \right)} \mathord{\left/

{\vphantom {{\left( {m + 1} \right)} 2}} \right.

\kern-\nulldelimiterspace} 2}\)

Thus, \(P\left( m \right)\) is true.

Let us prove the result for \(n = m + 1\).

\(\begin{aligned}{c}\sum\limits_{j = 1}^{m + 1} {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^{m + 1} {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = \sum\limits_{j = 1}^m {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^{m + 1} {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) + \left( {2\left( {m + 1} \right) - 1} \right)\left( {\sum\limits_{k = m + 1}^{m + 1} {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right)\\ &= \sum\limits_{j = 1}^m {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^m {\frac{1}{k} + \frac{1}{{m + 1}}} } \right) + \left( {2m + 1} \right)\frac{1}{{m + 1}}\\ &= \sum\limits_{j = 1}^m {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^m {\frac{1}{k}} } \right) + \frac{1}{{m + 1}}\sum\limits_{j = 1}^m {\left( {2j - 1} \right)} + \frac{{2m + 1}}{{m + 1}}\\ &= \frac{{m\left( {m + 1} \right)}}{2} + \frac{2}{{m + 1}}\sum\limits_{j = 1}^m j - \frac{1}{{m + 1}}\sum\limits_{j = 1}^m {1 + } \frac{{2m + 1}}{{m + 1}}\\\end{aligned}\)

Further, solve the above expression

\(\therefore \sum\limits_{j = 1}^{m + 1} {\left( {2j - 1} \right)} \left( {\sum\limits_{k = j}^{m + 1} {{1 \mathord{\left/

{\vphantom {1 k}} \right.

\kern-\nulldelimiterspace} k}} } \right) = \frac{{\left( {m + 1} \right)\left( {m + 2} \right)}}{2}\)

Thus, the result is true for \(n = m + 1\).

Hence, \(P\left( {m + 1} \right)\) is true.

Hence, by the principle of mathematical induction, the result \(P\left( n \right)\) is true for all positive integers \(n\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free