Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use mathematical induction to show that

\(1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + n \cdot {2^{n - 1}} = \left( {n - 1} \right) \cdot {2^n} + 1\)whenever nis a positive integer.

Short Answer

Expert verified

It is shown that\(1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + n \cdot {2^{n - 1}} = \left( {n - 1} \right) \cdot {2^n} + 1\)whenever\(n\)is a positive integer.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Principle of Mathematical Induction

Consider the propositional function\(P\left( n \right)\). Consider two actions to prove that\(P\left( n \right)\)evaluates to accurate for all set of positive integers\(n\).

Consider the first basic step is to confirm that \(P\left( 1 \right)\)true.

Consider the inductive step is to demonstrate that for any positive integer k the conditional statement\(P\left( k \right) \to P\left( {k + 1} \right)\)is true.

02

Prove the basis step

Given statement is:

\(1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + n \cdot {2^{n - 1}} = \left( {n - 1} \right) \cdot {2^n} + 1\)

In the basis step, we need to prove that\(P\left( 1 \right)\)is true.

For finding statement\(P\left( 1 \right)\)substituting\(1\)for\(n\)in the statement.

Therefore, the statement\(P\left( 1 \right)\)is:

\(\begin{array}{c}1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + n \cdot {2^{n - 1}} = \left( {n - 1} \right) \cdot {2^n} + 1\\1 = \left( {1 - 1} \right) \cdot {2^n} + 1\\1 = 1\end{array}\)

Therefore, the statement \(P\left( 1 \right)\) is true this is also known as the basis step of the proof.

03

Prove the Inductive step

In the inductive step, we need to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is,

\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

In the inductive hypothesis, we assume that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).

\(1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + k \cdot {2^{k - 1}} = \left( {k - 1} \right) \cdot {2^k} + 1\) ….. (i)

Now we must have to show that\(P\left( {k + 1} \right)\)is also true

Therefore replacing\(k\)with\(k + 1\)in the statement

\(\begin{array}{l}1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + \left( {k + 1} \right) \cdot {2^{k + 1 - 1}} = \left( {k + 1 - 1} \right) \cdot {2^{k + 1}} + 1\\1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + \left( {k + 1} \right) \cdot {2^{k + 1 - 1}} = k \cdot {2^{k + 1}} + 1\end{array}\)

Now, Adding\(\left( {k + 1} \right) \cdot {2^{k + 1 - 1}}\)in both sides of the equation (i) or inductive hypothesis.

\(\begin{array}{c}1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + k \cdot {2^{k - 1}} + \left( {k + 1} \right) \cdot {2^{k + 1 - 1}} = \left( {k - 1} \right) \cdot {2^k} + 1 + \left( {k + 1} \right) \cdot {2^{k + 1 - 1}}\\ = \left( {k - 1} \right) \cdot {2^k} + 1 + \left( {k + 1} \right) \cdot {2^k}\\ = \left( {k - 1} \right) \cdot {2^k} + \left( {k + 1} \right) \cdot {2^k} + 1\\ = \left( {k - 1 + k + 1} \right) \cdot {2^k} + 1\end{array}\)

Solve further as:

\(\begin{array}{c}1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + k \cdot {2^{k - 1}} + \left( {k + 1} \right) \cdot {2^{k + 1 - 1}} = 2k \cdot {2^k} + 1\\ = k \cdot {2^{k + 1}} + 1\end{array}\)

From the above, we can see that\(P\left( {k + 1} \right)\)is also true

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This

completes the inductive step.

Hence it is proved that\(1 \cdot {2^0} + 2 \cdot {2^1} + 3 \cdot {2^2} + ... + n \cdot {2^{n - 1}} = \left( {n - 1} \right) \cdot {2^n} + 1\)whenever\(n\)is a positive integer.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free