Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use mathematical induction to prove that if \({x_1},\,{x_2},\, \cdots ,\,{x_n}\)are positive real numbers with \(n \ge 2\), then

\(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_n} + \frac{1}{{{x_n}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \left( {{x_{n - 1}} + \frac{1}{{{x_n}}}} \right)\left( {{x_n} + \frac{1}{{{x_1}}}} \right)\).

Short Answer

Expert verified

By mathematical induction, the result \(P\left( n \right)\) is true for all positive integers \(n\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

To recall the concepts and principles

Mathematical Induction: The mathematical induction is defined as follows:

Step 1 (Base step): In this step, to prove that the statement is true for n=1.

Step 2(Inductive step): In this case, if the statement is true for nth iteration, then to prove it is also true for (n+1)th iteration.

It has given that positive real numbers \({x_1},\,{x_2},\, \cdots {x_n}\)with \(n \ge 2\).

02

To prove the result using principle of mathematical induction

Let the \(P\left( n \right)\) be the statement \(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_n} + \frac{1}{{{x_n}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \left( {{x_{n - 1}} + \frac{1}{{{x_n}}}} \right)\left( {{x_n} + \frac{1}{{{x_1}}}} \right)\).

Then by principle of mathematical induction,

For \(n = 2\), It has,

\(\begin{aligned}{c}\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) &= {x_1}{x_2} + \frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} + \frac{1}{{{x_1}{x_2}}}\\ &= {x_1}{x_2} + \frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} + \frac{1}{{{x_1}{x_2}}}\,\,\,\,\,\;\end{aligned}\) …… (1)

And

\(\begin{aligned}{c}\left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_1}}}} \right) &= {x_1}{x_2} + \frac{{{x_1}}}{{{x_1}}} + \frac{{{x_2}}}{{{x_2}}} + \frac{1}{{{x_1}{x_2}}}\\ &= {x_1}{x_2} + 2 + \frac{1}{{{x_1}{x_2}}}\,\end{aligned}\) …… (2)

Thus, from (1) and (2), it gives

\(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_1}}}} \right)\)if and only if \(\frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} \ge 2\).

Hence, \(P\left( 2 \right)\) is true.

Now, consider the result is true for \(n = k\).

\(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_k} + \frac{1}{{{x_k}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \left( {{x_{k - 1}} + \frac{1}{{{x_k}}}} \right)\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\)

Thus, \(P\left( k \right)\) is true.

Let us prove the result for \(n = k + 1\).

Without loss of generality, it can assume that \({x_{k + 1}}\) is the largest number (if not then rearrange the terms of the sequence).

\(\begin{aligned}{l}\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_k} + \frac{1}{{{x_k}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{x_{k - 1}} + \frac{1}{{{x_k}}}} \right)\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\end{aligned}\)

Here, \(P\left( {k + 1} \right)\) is true if and only if \(\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\).

Therefore, it is written as,

\(\begin{aligned}{c}\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_{k + 1}}}} + \frac{{{x_{k + 1}}}}{{{x_1}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\\ &= {x_k}{x_{k + 1}} + \frac{{{x_1}{x_k} + x_{_{k + 1}}^2}}{{{x_1}{x_{k + 1}}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\end{aligned}\) …… (3)

And,

\(\begin{aligned}{c}\left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\, &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_1}}} + \frac{{{x_{k + 1}}}}{{{x_{k + 1}}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\\ &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_1}}} + 1 + \frac{1}{{{x_1}{x_{k + 1}}}}\end{aligned}\) …… (4)

Thus, form (1) and (2), it can say that

\(\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\,\,\)if and only if \(\frac{{{x_1}{x_k} + x_{_{k + 1}}^2}}{{{x_1}{x_{k + 1}}}} \ge 1 + \frac{{{x_k}}}{{{x_1}}}\).

Hence, \(P\left( {k + 1} \right)\) is true.

Hence, by the principle of mathematical induction, the result \(P\left( n \right)\) is true for all positive integers \(n\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free