Let the \(P\left( n \right)\) be the statement \(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_n} + \frac{1}{{{x_n}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \left( {{x_{n - 1}} + \frac{1}{{{x_n}}}} \right)\left( {{x_n} + \frac{1}{{{x_1}}}} \right)\).
Then by principle of mathematical induction,
For \(n = 2\), It has,
\(\begin{aligned}{c}\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) &= {x_1}{x_2} + \frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} + \frac{1}{{{x_1}{x_2}}}\\ &= {x_1}{x_2} + \frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} + \frac{1}{{{x_1}{x_2}}}\,\,\,\,\,\;\end{aligned}\) …… (1)
And
\(\begin{aligned}{c}\left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_1}}}} \right) &= {x_1}{x_2} + \frac{{{x_1}}}{{{x_1}}} + \frac{{{x_2}}}{{{x_2}}} + \frac{1}{{{x_1}{x_2}}}\\ &= {x_1}{x_2} + 2 + \frac{1}{{{x_1}{x_2}}}\,\end{aligned}\) …… (2)
Thus, from (1) and (2), it gives
\(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_1}}}} \right)\)if and only if \(\frac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} \ge 2\).
Hence, \(P\left( 2 \right)\) is true.
Now, consider the result is true for \(n = k\).
\(\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_k} + \frac{1}{{{x_k}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \left( {{x_{k - 1}} + \frac{1}{{{x_k}}}} \right)\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\)
Thus, \(P\left( k \right)\) is true.
Let us prove the result for \(n = k + 1\).
Without loss of generality, it can assume that \({x_{k + 1}}\) is the largest number (if not then rearrange the terms of the sequence).
\(\begin{aligned}{l}\left( {{x_1} + \frac{1}{{{x_1}}}} \right)\left( {{x_2} + \frac{1}{{{x_2}}}} \right) \cdots \left( {{x_k} + \frac{1}{{{x_k}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_1} + \frac{1}{{{x_2}}}} \right)\left( {{x_2} + \frac{1}{{{x_3}}}} \right) \cdots \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{x_{k - 1}} + \frac{1}{{{x_k}}}} \right)\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\end{aligned}\)
Here, \(P\left( {k + 1} \right)\) is true if and only if \(\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\).
Therefore, it is written as,
\(\begin{aligned}{c}\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_{k + 1}}}} + \frac{{{x_{k + 1}}}}{{{x_1}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\\ &= {x_k}{x_{k + 1}} + \frac{{{x_1}{x_k} + x_{_{k + 1}}^2}}{{{x_1}{x_{k + 1}}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\end{aligned}\) …… (3)
And,
\(\begin{aligned}{c}\left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\, &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_1}}} + \frac{{{x_{k + 1}}}}{{{x_{k + 1}}}} + \frac{1}{{{x_1}{x_{k + 1}}}}\\ &= {x_k}{x_{k + 1}} + \frac{{{x_k}}}{{{x_1}}} + 1 + \frac{1}{{{x_1}{x_{k + 1}}}}\end{aligned}\) …… (4)
Thus, form (1) and (2), it can say that
\(\left( {{x_k} + \frac{1}{{{x_1}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_{k + 1}}}}} \right) \ge \left( {{x_k} + \frac{1}{{{x_{k + 1}}}}} \right)\left( {{x_{k + 1}} + \frac{1}{{{x_1}}}} \right)\,\,\)if and only if \(\frac{{{x_1}{x_k} + x_{_{k + 1}}^2}}{{{x_1}{x_{k + 1}}}} \ge 1 + \frac{{{x_k}}}{{{x_1}}}\).
Hence, \(P\left( {k + 1} \right)\) is true.
Hence, by the principle of mathematical induction, the result \(P\left( n \right)\) is true for all positive integers \(n\).