Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(Requires calculus) Use mathematical induction and the

product rule to show that if nis a positive integer and \({f_1}\left( x \right),\,\,{f_2}\left( x \right),\,...{f_n}\left( x \right)\), are all differentiable functions, then

\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_n}'\left( x \right)}}{{{f_n}\left( x \right)}}\).

Short Answer

Expert verified

It is proven that\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_n}'\left( x \right)}}{{{f_n}\left( x \right)}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Principle of Mathematical Induction

To prove that \(P\left( n \right)\)is true for all positive integers n, where\(P\left( n \right)\)is a propositional function, it completes two steps:

Basis Step:

It verifies that\(P\left( 1 \right)\)is true.

Inductive Step:

It show that the conditional statement\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

02

Proving the basis step

Let\(P\left( n \right)\): “\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_n}'\left( x \right)}}{{{f_n}\left( x \right)}}\)”.

In the basis step, it needs to prove that\(P\left( 1 \right)\)is true.

For finding statement\(P\left( 1 \right)\)substituting\(1\)for\(n\)in the statement:

\(\begin{array}{l}\frac{{\left( {{f_1}\left( x \right)} \right)'}}{{\left( {{f_1}\left( x \right)} \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}}\\\frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}}\end{array}\)

From the above, it can see that the statement \(P\left( 1 \right)\) is true this is also known as the basis step of the proof.

03

Proving the Inductive step

In the inductive step, it needs to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is, \(P\left( k \right) \to P\left( {k + 1} \right)\) is true for all positive integers k.

In the inductive hypothesis, it assumes that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).

That is,\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_k}'\left( x \right)}}{{{f_k}\left( x \right)}}\).

Now it must have to show that\(P\left( {k + 1} \right)\)is also true.

\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}} = \frac{{\left( {\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)\left( {{f_{k + 1}}} \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}}\)

Now applying the product rule of differentiation,

Which is,\(\frac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\frac{d}{{dx}}g\left( x \right) + g\left( x \right)\frac{d}{{dx}}f\left( x \right)\).

\(\begin{aligned}{c}\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}} &= \frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)f{'_{k + 1}}\left( x \right) + {f_{k + 1}}\left( x \right)\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}}\\\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}} &= \frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)f{'_{k + 1}}\left( x \right)}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}} + \frac{{{f_{k + 1}}\left( x \right)\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}}\\\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_{k + 1}}\left( x \right)}} &= \frac{{f{'_{k + 1}}\left( x \right)}}{{{f_{k + 1}}\left( x \right)}} + \frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)}}\end{aligned}\)

From the induction hypothesis, it knows

\(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_k}'\left( x \right)}}{{{f_k}\left( x \right)}}\)

Therefore, it is written as,

\(\begin{aligned}{l}\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)}} &= \frac{{f{'_{k + 1}}\left( x \right)}}{{{f_{k + 1}}\left( x \right)}} + \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_k}'\left( x \right)}}{{{f_k}\left( x \right)}}\\\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_k}\left( x \right)}} &= \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_k}'\left( x \right)}}{{{f_k}\left( x \right)}} + \frac{{f{'_{k + 1}}\left( x \right)}}{{{f_{k + 1}}\left( x \right)}}\end{aligned}\)

From the above, it can see that\(P\left( {k + 1} \right)\)is also true.

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This

completes the inductive step.

Hence It is proven that \(\frac{{\left( {{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)} \right)'}}{{{f_1}\left( x \right){f_2}\left( x \right)...{f_n}\left( x \right)}} = \frac{{{f_1}'\left( x \right)}}{{{f_1}\left( x \right)}} + \frac{{{f_2}'\left( x \right)}}{{{f_2}\left( x \right)}} + ... + \frac{{{f_n}'\left( x \right)}}{{{f_n}\left( x \right)}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free