Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find\({\bf{f}}\left( {\bf{1}} \right)\),\({\bf{f}}\left( {\bf{2}} \right)\),\({\bf{f}}\left( {\bf{3}} \right)\)and\({\bf{f}}\left( {\bf{4}} \right)\)if\({\bf{f}}\left( {\bf{n}} \right)\)is defined recursively by\({\bf{f}}\left( {\bf{0}} \right){\bf{ = 3}}\)and for\({\bf{n = 0,1,2}}...\)

(a)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = - {\bf{2f}}\left( {\bf{n}} \right)\)

(b)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = {\bf{3f}}\left( {\bf{n}} \right){\bf{ + 7}}\)

(c)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = {\bf{f}}{\left( {\bf{n}} \right)^{\bf{2}}}{\bf{ - 2f}}\left( {\bf{n}} \right){\bf{ - 2}}\)

(d)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = {{\bf{3}}^{{{{\bf{f}}\left( {\bf{n}} \right)} \mathord{\left/

{\vphantom {{{\bf{f}}\left( {\bf{n}} \right)} 3}} \right.

\kern-\nulldelimiterspace} 3}}}\)

Short Answer

Expert verified

(a) The values for\(f\left( 1 \right)\),\(f\left( 2 \right)\),\(f\left( 3 \right)\)and\(f\left( 4 \right)\)are\( - 6\),\(12\),\( - 24\)and\(48\).

(b) The values for\(f\left( 1 \right)\),\(f\left( 2 \right)\),\(f\left( 3 \right)\)and\(f\left( 4 \right)\)are\(16\),\(55\),\(172\)and\(523\).

(c) The values for\(f\left( 1 \right)\),\(f\left( 2 \right)\),\(f\left( 3 \right)\)and\(f\left( 4 \right)\)are\(1\),\( - 3\),\(13\),and\(141\).

(d) The values for \(f\left( 1 \right)\), \(f\left( 2 \right)\), \(f\left( 3 \right)\) and \(f\left( 4 \right)\) is \(3\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determination of value of function(a)

The recursive relation is based on the observations such that a pattern is formed by the recursive relations.

The recursive relation is given as:

\(f\left( {n + 1} \right) = - 2f\left( n \right)\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 3\)in the above expression to find\(f\left( 1 \right)\).

\(\begin{array}{c}f\left( {0 + 1} \right) = - 2f\left( 0 \right)\\f\left( 1 \right) = - 2\left( 3 \right)\\f\left( 1 \right) = - 6\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = - 6\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{c}f\left( {1 + 1} \right) = - 2f\left( 1 \right)\\f\left( 2 \right) = - 2\left( { - 6} \right)\\f\left( 2 \right) = 12\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 12\)in the above expression to find\(f\left( 3 \right)\).

\(\begin{array}{c}f\left( {2 + 1} \right) = - 2f\left( 2 \right)\\f\left( 3 \right) = - 2\left( {12} \right)\\f\left( 3 \right) = - 24\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = - 24\)in the above expression to find f(4).

\(\begin{array}{c}f\left( {3 + 1} \right) = - 2f\left( 3 \right)\\f\left( 4 \right) = - 2\left( { - 24} \right)\\f\left( 4 \right) = 48\end{array}\)

Therefore, the values for \(f\left( 1 \right)\), \(f\left( 2 \right)\), \(f\left( 3 \right)\) and \(f\left( 4 \right)\) are \( - 6\),\(12\) ,\( - 24\) and \(48\).

02

Determination of value of function(b)

The recursive relation is given as:

\(f\left( {n + 1} \right) = 3f\left( n \right) + 7\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 3\)in the above expression to find\(f\left( 1 \right)\).

\(\begin{array}{c}f\left( {0 + 1} \right) = 3f\left( 0 \right) + 7\\f\left( 1 \right) = 3\left( 3 \right) + 7\\f\left( 1 \right) = 16\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 16\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{c}f\left( {1 + 1} \right) = 3f\left( 1 \right) + 7\\f\left( 2 \right) = 3\left( {16} \right) + 7\\f\left( 2 \right) = 55\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 55\)in the above expression to find\(f\left( 3 \right)\).

\(\begin{array}{c}f\left( {2 + 1} \right) = 3f\left( 2 \right) + 7\\f\left( 3 \right) = 3\left( {55} \right) + 7\\f\left( 3 \right) = 172\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 172\)in the above expression to find f(4).

\(\begin{array}{c}f\left( {3 + 1} \right) = 3f\left( 3 \right) + 7\\f\left( 4 \right) = 3\left( {172} \right) + 7\\f\left( 4 \right) = 523\end{array}\)

Therefore, the values for \(f\left( 1 \right)\), \(f\left( 2 \right)\), \(f\left( 3 \right)\) and \(f\left( 4 \right)\) are \(16\),\(55\) ,\(172\) and \(523\).

03

Determination of value of function(c)

The recursive relation is given as:

\(f\left( {n + 1} \right) = f{\left( n \right)^2} - 2f\left( n \right) - 2\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 3\)in the above expression to find\(f\left( 1 \right)\).

\(\begin{array}{c}f\left( {0 + 1} \right) = f{\left( 0 \right)^2} - 2f\left( 0 \right) - 2\\f\left( 1 \right) = {\left( 3 \right)^2} - 2\left( 3 \right) - 2\\f\left( 1 \right) = 1\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 1\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{c}f\left( {1 + 1} \right) = f{\left( 1 \right)^2} - 2f\left( 1 \right) - 2\\f\left( 2 \right) = {\left( 1 \right)^2} - 2\left( 1 \right) - 2\\f\left( 2 \right) = - 3\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = - 3\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{c}f\left( {2 + 1} \right) = f{\left( 2 \right)^2} - 2f\left( 2 \right) - 2\\f\left( 3 \right) = {\left( { - 3} \right)^2} - 2\left( { - 3} \right) - 2\\f\left( 3 \right) = 13\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 13\)in the above expression to find f(4).

\(\begin{array}{c}f\left( {3 + 1} \right) = f{\left( 3 \right)^2} - 2f\left( 3 \right) - 2\\f\left( 4 \right) = {\left( {13} \right)^2} - 2\left( {13} \right) - 2\\f\left( 4 \right) = 141\end{array}\)

Therefore, the values for \(f\left( 1 \right)\), \(f\left( 2 \right)\), \(f\left( 3 \right)\) and \(f\left( 4 \right)\) are\(1\), \( - 3\),\(13\),and \(141\).

04

Determination of value of function(d)

The recursive relation is given as:

\(f\left( {n + 1} \right) = {3^{\frac{{f\left( n \right)}}{3}}}\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 3\)in the above expression to find\(f\left( 1 \right)\).

\(\begin{array}{l}f\left( {0 + 1} \right) = {3^{\frac{{f\left( 0 \right)}}{3}}}\\f\left( {0 + 1} \right) = {3^{\frac{3}{3}}}\\f\left( 1 \right) = 3\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 3\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{l}f\left( {1 + 1} \right) = {3^{\frac{3}{3}}}\\f\left( 2 \right) = 3\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 3\)in the above expression to find\(f\left( 3 \right)\).

\(\begin{array}{l}f\left( {2 + 1} \right) = {3^{\frac{{f\left( 2 \right)}}{3}}}\\f\left( 3 \right) = {3^{\frac{3}{3}}}\\f\left( 3 \right) = 3\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 3\)in the above expression to find f(4).

\(\begin{array}{l}f\left( {3 + 1} \right) = {3^{\frac{3}{3}}}\\f\left( 4 \right) = 3\end{array}\)

Therefore, the values for \(f\left( 1 \right)\), \(f\left( 2 \right)\), \(f\left( 3 \right)\) and \(f\left( 4 \right)\) is \(3\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free