Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show if nis a positive integer with \(n \ge 2\), then

\(\sum\limits_{j = 2}^n {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {n - 1} \right)\left( {3n + 2} \right)}}{{4n\left( {n + 1} \right)}}\)

Short Answer

Expert verified

It is shown that\(\sum\limits_{j = 2}^n {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {n - 1} \right)\left( {3n + 2} \right)}}{{4n\left( {n + 1} \right)}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Principle of Mathematical Induction

To prove that\(P\left( n \right)\)is true for all positive integers n, where\(P\left( n \right)\)is a propositional function, it completes two steps:

Basis Step:

It verifies that\(P\left( 1 \right)\)is true.

Inductive Step:

It shows that the conditional statement \(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

02

Proving the basis step

Let\(P\left( n \right)\): “\(\sum\limits_{j = 2}^n {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {n - 1} \right)\left( {3n + 2} \right)}}{{4n\left( {n + 1} \right)}}\)”.

In the basis step, it needs to prove that\(P\left( 1 \right)\)is true.

Since\(n \ge 2\), it needs to prove that\(P\left( 2 \right)\)is true.

For finding statement\(P\left( 2 \right)\)substituting 2 for\(n\)in the statement:

\(\begin{array}{c}\frac{1}{{{{\left( 2 \right)}^2} - 1}} = \frac{{\left( {2 - 1} \right)\left( {3\left( 2 \right) + 2} \right)}}{{4\left( 2 \right)\left( {2 + 1} \right)}}\\\frac{1}{{4 - 1}} = \frac{8}{{8 \cdot 3}}\\\frac{1}{3} = \frac{1}{3}\end{array}\)

From the above, it can see that the statement \(P\left( 2 \right)\) is true this is also known as the basis step of the proof.

03

Proving the Inductive step

In the inductive step, it needs to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is,\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

In the inductive hypothesis, it assumes that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).

That is\(\sum\limits_{j = 2}^k {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}}\).

Now it must have to show that\(P\left( {k + 1} \right)\)is also true.

Therefore, replacing\(k\)with\(k + 1\)in the statement:

From inductive hypothesis it knows\(\sum\limits_{j = 2}^k {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}}\).

Therefore, it is written as:

\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{{{\left( {k + 1} \right)}^2} - 1}}\\ &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{{k^2} + 2k}}\\ &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{k\left( {k + 2} \right)}}\\ &= \frac{{\left( {k + 2} \right)\left( {k - 1} \right)\left( {3k + 2} \right) + 4\left( {k + 1} \right)}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)

Further, solve the above expression,

\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{\left( {k + 2} \right)\left( {k - 1} \right)\left( {3k + 2} \right) + 4\left( {k + 1} \right)}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{3{k^3} + 5{k^2}}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)

Canceling similar terms,

\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{3{k^2} + 5k}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{k\left( {3k + 5} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{\left( {\left( {k + 1} \right) - 1} \right)\left( {3\left( {k + 1} \right) + 2} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)

From the above, it can see that\(P\left( {k + 1} \right)\)is also true.

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This

completes the inductive step.

Hence It is shown that\(\sum\limits_{j = 2}^n {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {n - 1} \right)\left( {3n + 2} \right)}}{{4n\left( {n + 1} \right)}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free