In the inductive step, it needs to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.
That is,\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.
In the inductive hypothesis, it assumes that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).
That is\(\sum\limits_{j = 2}^k {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}}\).
Now it must have to show that\(P\left( {k + 1} \right)\)is also true.
Therefore, replacing\(k\)with\(k + 1\)in the statement:
From inductive hypothesis it knows\(\sum\limits_{j = 2}^k {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}}\).
Therefore, it is written as:
\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{{{\left( {k + 1} \right)}^2} - 1}}\\ &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{{k^2} + 2k}}\\ &= \frac{{\left( {k - 1} \right)\left( {3k + 2} \right)}}{{4k\left( {k + 1} \right)}} + \frac{1}{{k\left( {k + 2} \right)}}\\ &= \frac{{\left( {k + 2} \right)\left( {k - 1} \right)\left( {3k + 2} \right) + 4\left( {k + 1} \right)}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)
Further, solve the above expression,
\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{\left( {k + 2} \right)\left( {k - 1} \right)\left( {3k + 2} \right) + 4\left( {k + 1} \right)}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{3{k^3} + 5{k^2}}}{{4k\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)
Canceling similar terms,
\(\begin{aligned}{c}\sum\limits_{j = 2}^{k + 1} {\frac{1}{{{j^2} - 1}}} &= \frac{{3{k^2} + 5k}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{k\left( {3k + 5} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\\ &= \frac{{\left( {\left( {k + 1} \right) - 1} \right)\left( {3\left( {k + 1} \right) + 2} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\end{aligned}\)
From the above, it can see that\(P\left( {k + 1} \right)\)is also true.
Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This
completes the inductive step.
Hence It is shown that\(\sum\limits_{j = 2}^n {\frac{1}{{{j^2} - 1}}} = \frac{{\left( {n - 1} \right)\left( {3n + 2} \right)}}{{4n\left( {n + 1} \right)}}\).