Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use mathematical induction to prove that \(\sum\limits_{j = 1}^n {{j^2}} {2^j} = {n^2}{2^{n + 1}} - n{2^{n + 2}} + 3 \cdot {2^{n + 1}} - 6\) for every positive integer\(n\)

Short Answer

Expert verified

Using mathematical induction, it is proved that\(\sum\limits_{j = 1}^n {{j^2}} {2^j} = {n^2}{2^{n + 1}} - n{2^{n + 2}} + 3 \cdot {2^{n + 1}} - 6\)for every positive integer n.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Principle of Mathematical Induction

To prove that \(P\left( n \right)\)is true for all positive integers\(n\), where\(P\left( n \right)\)is a propositional function, it completes two steps:

Basis Step:

It verifies that\(P\left( 1 \right)\)is true.

Inductive Step:

It shows that the conditional statement\(P\left( k \right) \to P\left( {k + 1} \right)\) is true for all positive integers k.

02

Proving the basis step

Let\(P\left( n \right)\): “\(\sum\limits_{j = 1}^n {{j^2}} {2^j} = {n^2}{2^{n + 1}} - n{2^{n + 2}} + 3 \cdot {2^{n + 1}} - 6\)”.

In the basis step, it needs to prove that\(P\left( 1 \right)\)is true.

For finding statement\(P\left( 1 \right)\)substituting\(1\)for\(n\)in the statement.

\(\begin{array}{c}{1^2}{2^1} = {1^2} \cdot {2^{1 + 1}} - 1 \cdot {2^{1 + 2}} + 3 \cdot {2^{1 + 1}} - 6\\2 = 4 - 8 + 12 - 6\\2 = 2\end{array}\)

From the above, it can see that the statement \(P\left( 1 \right)\) is true this is also known as the basis step of the proof.

03

Proving the Inductive step

In the inductive step, it needs to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is,\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

In the inductive hypothesis, it assumes that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).

That is, it is written as\(\sum\limits_{j = 1}^k {{j^2}} {2^j} = {k^2}{2^{k + 1}} - k{2^{k + 2}} + 3 \cdot {2^{k + 1}} - 6\).

Now it must have to show that\(P\left( {k + 1} \right)\)is also true.

\(\sum\limits_{j = 1}^{k + 1} {{j^2}} {2^j} = \sum\limits_{j = 1}^k {{j^2}} {2^j} + {\left( {k + 1} \right)^2}{2^{k + 1}}\)

From inductive hypothesis it knows \(\sum\limits_{j = 1}^k {{j^2}} {2^j} = {k^2}{2^{k + 1}} - k{2^{k + 2}} + 3 \cdot {2^{k + 1}} - 6\).

Therefore, it is written as:

\(\begin{aligned}{c}\sum\limits_{j = 1}^{k + 1} {{j^2}} {2^j} = {k^2}{2^{k + 1}} - k{2^{k + 2}} + 3 \cdot {2^{k + 1}} - 6 + {\left( {k + 1} \right)^2}{2^{k + 1}} - 6\\ &= {2^{k + 1}}\left( {{k^2} - 2k + 3 + {{\left( {k + 1} \right)}^2}} \right) - 6\\ &= {2^{k + 1}}\left( {{k^2} - 2k + 3 + {k^2} + 2k + 1} \right) - 6\\ &= {2^{k + 1}}\left( {2{k^2} + 4} \right) - 6\end{aligned}\)

Further, solve the above expression,

\(\begin{aligned}{c}\sum\limits_{j = 1}^{k + 1} {{j^2}} {2^j} &= {2^{k + 2}}\left( {{k^2} + 2} \right) - 6\\ &= {2^{k + 2}}\left( {{k^2} + 2k + 1 - 2k - 2 + 3} \right) - 6\\ &= {2^{k + 2}}\left( {{{\left( {k + 1} \right)}^2} - 2\left( {k + 1} \right) + 3} \right) - 6\\ &= {\left( {k + 1} \right)^2}{2^{k + 2}} - \left( {k + 1} \right){2^{k + 3}} + 3 \cdot {2^{k + 2}} - 6\end{aligned}\)

From the above, it can see that\(P\left( {k + 1} \right)\)is also true.

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This

completes the inductive step.

Hence, using mathematical induction, it is proved that\(\sum\limits_{j = 1}^n {{j^2}} {2^j} = {n^2}{2^{n + 1}} - n{2^{n + 2}} + 3 \cdot {2^{n + 1}} - 6\)for every positive integer n.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free