Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use mathematical induction to show that\({{\sum\limits_{j = 1}^n {cosjx = cos\left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} sin\left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \mathord{\left/

{\vphantom {{\sum\limits_{j = 1}^n {cosjx = cos\left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} sin\left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} {sin\left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}} \right.

\kern-\nulldelimiterspace} {sin\left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\)whenever nis a

positive integer and \(sin\left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) \ne 0\).

Short Answer

Expert verified

Using mathematical induction, it is proved that\({{\sum\limits_{j = 1}^n {\cos jx = \cos \left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \sin \left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \mathord{\left/

{\vphantom {{\sum\limits_{j = 1}^n {\cos jx = \cos \left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \sin \left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} {\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}} \right.

\kern-\nulldelimiterspace} {\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\).

Step by step solution

01

Principle of Mathematical Induction

To prove that \(P\left( n \right)\)is true for all positive integers n, where \(P\left( n \right)\)is a propositional function, it completes two steps:

Basis Step:

It verifies that \(P\left( 1 \right)\)is true.

Inductive Step:

It shows that the conditional statement \(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

02

Proving the basis step

Let\(P\left( n \right)\):\(\sum\limits_{j = 1}^n {\cos jx} = \frac{{\cos \left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\).

In the basis step, it needs to prove that\(P\left( 1 \right)\)is true.

For finding statement\(P\left( 1 \right)\)substituting\(1\)for\(n\)in the statement

\(\begin{array}{l}\cos x = \frac{{\cos \left( {\left( {1 + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{\left( 1 \right)x} \mathord{\left/

{\vphantom {{\left( 1 \right)x} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\\\cos x = \cos x\end{array}\)

From the above, it can see that the statement \(P\left( 1 \right)\) is true this is also known as the basis step of the proof.

03

Proving the Inductive step

In the inductive step, it needs to prove that, if\(P\left( k \right)\)is true, then\(P\left( {k + 1} \right)\)is also true.

That is,\(P\left( k \right) \to P\left( {k + 1} \right)\)is true for all positive integers k.

In the inductive hypothesis, it assumes that\(P\left( k \right)\)is true for any arbitrary positive integer\(k\).

That is, it is written as\(\sum\limits_{j = 1}^k {\cos jx} = \frac{{\cos \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\).

Now it must have to show that\(P\left( {k + 1} \right)\)is also true.

\(\sum\limits_{j = 1}^{k + 1} {\cos jx} = \sum\limits_{j = 1}^k {\cos jx} + \cos \left( {k + 1} \right)x\)

From inductive hypothesis it assumes\(\sum\limits_{j = 1}^k {\cos jx} = \frac{{\cos \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\).

Therefore, it is written as:

\(\begin{array}{c}\sum\limits_{j = 1}^{k + 1} {\cos jx} = \sum\limits_{j = 1}^k {\cos jx} + \cos \left( {\left( {k + 1} \right)x} \right)\\ = \frac{{\cos \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}} + \cos \left( {\left( {k + 1} \right)x} \right)\\ = \frac{{\cos \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) + \cos \left( {\left( {k + 1} \right)x} \right)\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\end{array}\)

Applying the formula of\(\cos a\,\sin b = \frac{{\sin \left( {a + b} \right) - \sin \left( {a - b} \right)}}{2}\), then it is written as:

\(\begin{array}{c}\sum\limits_{j = 1}^{k + 1} {\cos jx} = \frac{{\sin \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x {2 + {{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right.

\kern-\nulldelimiterspace} {2 + {{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right) - \sin \left( {\left( {k + 1} \right){x \mathord{\left/

{\vphantom {x {2 - {{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right.

\kern-\nulldelimiterspace} {2 - {{kx} \mathord{\left/

{\vphantom {{kx} 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right) + \sin \left( {\left( {k + 1} \right)x + {x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{\left( {k + 1} \right)x - x} \mathord{\left/

{\vphantom {{\left( {k + 1} \right)x - x} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{2\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\\ = \frac{{\sin \left( {\left( {2k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) - \sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) + \sin \left( {\left( {2k + 3} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) - \sin \left( {{{\left( {2k + 1} \right)x} \mathord{\left/

{\vphantom {{\left( {2k + 1} \right)x} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{2\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\\ = \frac{{\sin \left( {\left( {2k + 3} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) - \sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{2\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\\\frac{{ = \sin \left( {\left( {k + 2} \right){x \mathord{\left/

{\vphantom {x {2 + \left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right.

\kern-\nulldelimiterspace} {2 + \left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right) - \sin \left( {\left( {k + 2} \right){x \mathord{\left/

{\vphantom {x {2 - \left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right.

\kern-\nulldelimiterspace} {2 - \left( {k + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}}}} \right)}}{{2\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\end{array}\)

Again, using formula\(\cos a\,\sin b = \frac{{\sin \left( {a + b} \right) - \sin \left( {a - b} \right)}}{2}\), then it is written as:

\(\sum\limits_{j = 1}^{k + 1} {\cos jx} = \frac{{\cos \left( {\left( {k + 2} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)\sin \left( {{{\left( {k + 1} \right)x} \mathord{\left/

{\vphantom {{\left( {k + 1} \right)x} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}{{\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\)

From the above, it can see that\(P\left( {k + 1} \right)\)is also true.

Hence,\(P\left( {k + 1} \right)\)is true under the assumption that\(P\left( k \right)\)is true. This

completes the inductive step.

Hence using mathematical induction, it is proved that\({{\sum\limits_{j = 1}^n {\cos jx = \cos \left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \sin \left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \mathord{\left/

{\vphantom {{\sum\limits_{j = 1}^n {\cos jx = \cos \left( {\left( {n + 1} \right){x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} \sin \left( {{{nx} \mathord{\left/

{\vphantom {{nx} 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)} {\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}} \right.

\kern-\nulldelimiterspace} {\sin \left( {{x \mathord{\left/

{\vphantom {x 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free