Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For which nonnegative integer’s n is 2n+32n?Prove your answer.

Short Answer

Expert verified

P(n) is true for all integers n>3.

Step by step solution

01

Step: 1

The intersection of these two graphs is (3.247, 9.494).

Since n is an integer :n>3.

If n=4,

2(4)+3241116

it is true for n=4.

02

Step: 2

Let P(k) be true.

2k+32k

We need to prove that P(k+1) is true.

03

Step: 3

2(k+1)+3=(2k+3)+22k+2=22k1+122k=2k+1

It is true for P(k+1) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Prove that the recursive algorithm for finding the sum of the first n positive integers you found in Exercise 8 is correct.

Prove that for every positive integer n,

1.2.3+2.3.4++n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4

Assume that a chocolate bar consists of n squares arranged in a rectangular pattern. The entire bar, a smaller rectangular piece of the bar, can be broken along a vertical or a horizontal line separating the squares. Assuming that only one piece can be broken at a time, determine how many breaks you must successfully make to break the bar into n separate squares. Use strong induction to prove your answer

Let P (n) be the statement that a postage of n cents can be formed using just 3-cent stamps and 5-cent stamps. The parts of this exercise outline a strong induction proof that P (n) is true for n ≥ 8.

a) Show that the statements P (8), P (9), and P (10) are true, completing the basis step of the proof.

b) What is the inductive hypothesis of the proof?

c) What do you need to prove in the inductive step?

d) Complete the inductive step for k ≥ 10.

e) Explain why these steps show that this statement is true whenever n ≥ 8.

In the proof of Lemma 1 we mentioned that many incorrect methods for finding a vertex such that the line segment is an interior diagonal of have been published. This exercise presents some of the incorrect ways has been chosen in these proofs. Show, by considering one of the polygons drawn here, that for each of these choices of , the line segment is not necessarily an interior diagonal of .

a) p is the vertex of P such that the angleabpis smallest.

b) p is the vertex of P with the least -coordinate (other than ).

c) p is the vertex of P that is closest to .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free