Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find f (1), f (2), f (3), and f (4) if f (n) is defined recursively by and for , ...

(a) f ( n + 1 ) = f ( n ) + 2

(b) f (n + 1 ) = 3f (n)\({\bf{f}}\left( {\bf{0}} \right){\bf{ = 1}}\)

(c)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = {{\bf{2}}^{{\bf{f}}\left( {\bf{n}} \right)}}\)

(d)\({\bf{f}}\left( {{\bf{n + 1}}} \right) = {\bf{f}}{\left( {\bf{n}} \right)^{\bf{2}}}{\bf{ + f}}\left( {\bf{n}} \right){\bf{ + 1}}\)

Short Answer

Expert verified

(a) The values for\(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\)and\(f\left( 4 \right)\)are 3,5,7 and 9.

(b) The values for\(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\)and\(f\left( 4 \right)\)are 3,9,27 and 81.

(c) The values for \(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\)and\(f\left( 4 \right)\)are 2,4,16 and 65536.

(d) The values for \(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\) and \(f\left( 4 \right)\) are 3,13,183 and 33673.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determination of value of function(a)

The recursive relation is based on the observations such that a pattern is formed by the recursive relations.

The recursive relation is given as:

\(f\left( {n + 1} \right) = f\left( n \right) + 2\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 1\)in the above expression to find f(1).

\(\begin{array}{l}f\left( {0 + 1} \right) = f\left( 0 \right) + 2\\f\left( 1 \right) = f\left( 0 \right) + 2\\f\left( 1 \right) = 1 + 2\\f\left( 1 \right) = 3\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 3\)in the above expression to find f(2).

\(\begin{array}{l}f\left( {1 + 1} \right) = f\left( 1 \right) + 2\\f\left( 2 \right) = f\left( 1 \right) + 2\\f\left( 2 \right) = 3 + 2\\f\left( 2 \right) = 5\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 5\)in the above expression to find f(3).

\(\begin{array}{l}f\left( {2 + 1} \right) = f\left( 2 \right) + 2\\f\left( 3 \right) = f\left( 2 \right) + 2\\f\left( 3 \right) = 5 + 2\\f\left( 3 \right) = 7\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 7\)in the above expression to find f(4).

\(\begin{array}{l}f\left( {3 + 1} \right) = f\left( 3 \right) + 2\\f\left( 4 \right) = f\left( 3 \right) + 2\\f\left( 4 \right) = 7 + 2\\f\left( 4 \right) = 9\end{array}\)

Therefore, the values for \(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\) and \(f\left( 4 \right)\) are 3,5,7 and 9.

02

Determination of value of function(b)

The recursive relation is given as:

\(f\left( {n + 1} \right) = 3f\left( n \right)\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 1\)in the above expression to find f(1).

\(\begin{array}{l}f\left( {0 + 1} \right) = 3f\left( 0 \right)\\f\left( 1 \right) = 3\left( 1 \right)\\f\left( 1 \right) = 3\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 3\)in the above expression to find f(2).

\(\begin{array}{l}f\left( {1 + 1} \right) = 3f\left( 1 \right)\\f\left( 2 \right) = 3\left( 3 \right)\\f\left( 2 \right) = 9\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 9\)in the above expression to find f(3).

\(\begin{array}{l}f\left( {2 + 1} \right) = 3f\left( 2 \right)\\f\left( 3 \right) = 3\left( 9 \right)\\f\left( 3 \right) = 27\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 27\)in the above expression to find f(4).

\(\begin{array}{l}f\left( {3 + 1} \right) = 3f\left( 3 \right)\\f\left( 4 \right) = 3\left( {27} \right)\\f\left( 4 \right) = 81\end{array}\)

Therefore, the values for \(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\) and \(f\left( 4 \right)\) are 3,9,27 and 81.

03

Determination of value of function(c)

The recursive relation is given as:

\(f\left( {n + 1} \right) = {2^{f\left( n \right)}}\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 1\)in the above expression to find f(1).

\(\begin{array}{l}f\left( {0 + 1} \right) = {2^{f\left( 0 \right)}}\\f\left( 1 \right) = {2^1}\\f\left( 1 \right) = 2\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 2\)in the above expression to find f(2).

\(\begin{array}{c}f\left( {1 + 1} \right) = {2^{f\left( 1 \right)}}\\f\left( 2 \right) = {2^2}\\f\left( 2 \right) = 4\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 4\)in the above expression to find f(3).

\(\begin{array}{l}f\left( {2 + 1} \right) = {2^{f\left( 2 \right)}}\\f\left( 3 \right) = {2^4}\\f\left( 3 \right) = 16\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 16\)in the above expression to find f(4).

\(\begin{array}{l}f\left( {3 + 1} \right) = {2^{f\left( 3 \right)}}\\f\left( 4 \right) = {2^{16}}\\f\left( 4 \right) = 65536\end{array}\)

Therefore, the values for \(f\left( 1 \right),\;f\left( 2 \right),\;f\left( 3 \right)\) and \(f\left( 4 \right)\)are 2,4,16 and 65536.

04

Determination of value of function(d)

The recursive relation is given as:

\(f\left( {n + 1} \right) = f{\left( n \right)^2} + f\left( n \right) + 1\)

Substitute\(n = 0\)and\(f\left( 0 \right) = 1\)in the above expression to find\(f\left( 1 \right)\).

\(\begin{array}{c}f\left( {0 + 1} \right) = f{\left( 0 \right)^2} + f\left( 0 \right) + 1\\f\left( 1 \right) = {\left( 1 \right)^2} + 1 + 1\\f\left( 1 \right) = 3\end{array}\)

Substitute\(n = 1\)and\(f\left( 1 \right) = 3\)in the above expression to find\(f\left( 2 \right)\).

\(\begin{array}{l}f\left( {1 + 1} \right) = f{\left( 1 \right)^2} + f\left( 1 \right) + 1\\f\left( 2 \right) = {\left( 3 \right)^2} + 3 + 1\\f\left( 2 \right) = 13\end{array}\)

Substitute\(n = 2\)and\(f\left( 2 \right) = 13\)in the above expression to find\(f\left( 3 \right)\).

\(\begin{array}{l}f\left( {2 + 1} \right) = f{\left( 2 \right)^2} + f\left( 2 \right) + 1\\f\left( 3 \right) = {\left( {13} \right)^2} + 13 + 1\\f\left( 3 \right) = 183\end{array}\)

Substitute\(n = 3\)and\(f\left( 3 \right) = 183\)in the above expression to find\(f\left( 4 \right)\).

\(\begin{array}{l}f\left( {3 + 1} \right) = f{\left( 3 \right)^2} + f\left( 3 \right) + 1\\f\left( 4 \right) = {\left( {183} \right)^2} + 183 + 1\\f\left( 4 \right) = 33673\end{array}\)

Therefore, the values for f(1), f(2), f(3) and f(4) are 3,13,183 and 33673.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free