Chapter 5: Q16E (page 330)
Prove that for every positive integer n,
Chapter 5: Q16E (page 330)
Prove that for every positive integer n,
All the tools & learning materials you need for study success - in one app.
Get started for freeThere are infinitely many stations on a train route. Sup-
pose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next station. Show that the train stops at all stations.
Prove that 21 divides whenever n is a positive integer.
Trace Algorithm 4 when it is given m = 5 , n = 11 , and b = 3 as input. That is, show all the steps Algorithm 4 uses to find 3 mod 5 .
Suppose that is a simple polygon with vertices listed so that consecutive vertices are connected by an edge, and and are connected by an edge. A vertex is called an ear if the line segment connecting the two vertices adjacent tolocalid="1668577988053" is an interior diagonal of the simple polygon. Two ears and are called nonoverlapping if the interiors of the triangles with vertices and its two adjacent vertices and and its two adjacent vertices do not intersect. Prove that every simple polygon with at least four vertices has at least two nonoverlapping ears.
Let be the statement that when nonintersecting diagonals are drawn inside a convex polygon with sides, at least two vertices of the polygon are not endpoints of any of these diagonals.
a) Show that when we attempt to prove for all integers n with using strong induction, the inductive step does not go through.
b) Show that we can prove that is true for all integers n with by proving by strong induction the stronger assertion , for , where states that whenever nonintersecting diagonals are drawn inside a convex polygon with sides, at least two nonadjacent vertices are not endpoints of any of these diagonals.
What do you think about this solution?
We value your feedback to improve our textbook solutions.