Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The complete m-partite graph \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\)has vertices partitioned into \({\rm{m}}\)subsets of \({{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}\)elements each, and vertices are adjacent if and only if they are in different subsets in the partition.

How many vertices and how many edges does the complete m-partite graph \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\)have?

Short Answer

Expert verified

The number of vertices \(\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{n}}_{\rm{i}}}} \)and edges\(\sum\limits_{1 \le i < j \le m} {{n_i}} {{\rm{n}}_{\rm{j}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definitions.

The vertices of \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\)are partitioned into \({\rm{m}}\)sets, with the \({i^{{\rm{th}}}}\)set containing \({{\rm{n}}_{\rm{i}}}\)vertices, and there is an edge connecting two vertices if they are in different subsets.

The number of edges that link to a vertex is the vertex's degree.

The theorem of handshakes The property of an undirected graph with \({\rm{V}}\)vertices and \({\rm{m}}\)edges is:

\({\rm{2m = }}\sum\limits_{{\rm{v}} \in {\rm{V}}} {{\rm{deg}}\left( {\rm{v}} \right)} \)

02

To determine the number of vertices.

Vertices:

The vertices of \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\)are divided into the sets\({V_{\rm{1}}}{\rm{,}}{{\rm{V}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{V}}_{\rm{m}}}\), each of which has \({{\rm{n}}_{\rm{i}}}\)vertices.

The total of the number of vertices of all sets in the partition determines the number of vertices \({\rm{n}}\)in \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\):

\({\rm{n = }}{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ + \ldots + }}{{\rm{n}}_{\rm{m}}}{\rm{ = }}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{n}}_{\rm{i}}}} \)

As a result, the number of vertices of the\({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{n}}_{\rm{m}}}}}{\rm{is}}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{n}}_{\rm{i}}}} \).

03

To determine the number of edges.

Edges:

All vertices in \({{\rm{V}}_{\rm{1}}}{\rm{,}}{{\rm{V}}_{\rm{2}}}{\rm{,}}.......{\rm{,}}{{\rm{V}}_{{\rm{i - 1}}}}{\rm{,}}{{\rm{V}}_{{\rm{i + 1}}}}{\rm{,}}.......{\rm{,}}{{\rm{V}}_{\rm{m}}}\)(excluding those in\({{\rm{V}}_i}\))are connected to a vertex in the set\({{\rm{V}}_i}\). The sum of the number of vertices in all sets (excluding those in\({{\rm{V}}_i}\)) determines the degree of a vertex in\({{\rm{V}}_i}\).

\(v \in {V_i}\)

Using the fact that \({{\rm{V}}_i}\)has\({n_i}\) vertices, calculate the sum of all vertices' degrees.

\(\begin{array}{c}\sum\limits_{{\rm{v}} \in {{\rm{V}}_{\rm{i}}}} {{\rm{deg}}} {\rm{(v) = }}\sum\limits_{{\rm{v}} \in {{\rm{V}}_{\rm{i}}}} {\sum\limits_{{\rm{j}} \ne {\rm{i}}} {{{\rm{n}}_{\rm{j}}}} } \\{\rm{ = }}{{\rm{n}}_{\rm{i}}}\sum\limits_{{\rm{j}} \ne {\rm{i}}} {{{\rm{n}}_{\rm{j}}}} \end{array}\)

Next, calculate the total sum of all partitioning sets:

\(\begin{array}{c}\sum\limits_{v \in V} {\deg } ({\rm{v) = }}\sum\limits_{i = 1}^n {\sum\limits_{v \in {V_i}} {\deg } } (v)\\{\rm{ = }}\sum\limits_{i = 1}^n {{n_i}} \sum\limits_{j \ne i} {{n_j}} \\{\rm{ = }}\sum\limits_{i = 1}^n {\sum\limits_{j \ne i} {{n_i}} } {n_j}\\{\rm{ = }}\sum\limits_{1 \le i < j \le m} {{n_i}} {n_j}\end{array}\)

04

Result.

Therefore, the number of vertices \(\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{n}}_{\rm{i}}}} \)and edges\(\sum\limits_{1 \le i < j \le m} {{n_i}} {{\rm{n}}_{\rm{j}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free