Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Draw these graphs.

(a) \({K_{1,2,3}}\)

(b) \({{\rm{K}}_{{\rm{2,2,2}}}}\)

(c) \({{\rm{K}}_{{\rm{1,2,2,3}}}}\)

Short Answer

Expert verified

(a) The vertices of \({{\rm{K}}_{{\rm{1,2,3}}}}\)are divided into three groups: \(U\)with one vertex \({{\rm{u}}_{\rm{1}}}{\rm{,V}}\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}{\rm{,}}\)and \({\rm{W}}\)with three vertices \({{\rm{w}}_{\rm{1}}}{\rm{\& }}{{\rm{w}}_{\rm{3}}}{\rm{.}}\)

All vertices in \({\rm{V\& W}}\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in \({\rm{W}}{\rm{.}}\)

(b) The vertices of \({{\rm{K}}_{{\rm{2,2,2}}}}\)are divided into three groups: \({\rm{U}}\)with two vertices \({{\rm{u}}_{\rm{1}}}{\rm{\& }}{{\rm{u}}_{\rm{2}}}{\rm{,V}}\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}\)and \({\rm{W}}\)with vertices\({{\rm{w}}_{\rm{1}}}{\rm{\& }}{{\rm{w}}_{\rm{2}}}\).

All vertices in \({\rm{V\& W}}\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in \({\rm{W}}{\rm{.}}\)

(c) The vertices of \({{\rm{K}}_{{\rm{1,2,2,3}}}}\)are divided into four groups: \({\rm{U}}\)with one vertex \({{\rm{u}}_{\rm{1}}}{\rm{,V}}\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}{\rm{,W}}\)with two vertices and \({{\rm{w}}_{\rm{2}}}{\rm{\& X}}\)with three vertices\({{\rm{x}}_{\rm{1}}}{\rm{\& }}{{\rm{x}}_{\rm{3}}}\).

All vertices in \({\rm{V,W\& X}}\)are linked to the vertex in\({\rm{U}}\).

All \({\rm{V}}\)vertices must also be linked to all \({\rm{W\& X}}\)vertices.

All of the vertices in \({\rm{W}}\)must be linked to all of the vertices in \({\rm{X}}{\rm{.}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definitions.

The vertices of \({{\rm{K}}_{{{\rm{n}}_{\rm{1}}}{\rm{,}}{{\rm{n}}_{\rm{2}}}{\rm{,}}.....{\rm{,}}{{\rm{n}}_{\rm{m}}}}}\)are partitioned into \({\rm{m}}\)sets, and there is an edge between two vertices if they are in separate subsets.

02

Draw the graph. \({K_{1,2,3}}\)

(a) The vertices of \({{\rm{K}}_{{\rm{1,2,3}}}}\)are divided into three groups: \({\rm{U}}\)with one vertex\({{\rm{u}}_{\rm{1}}}\),\({\rm{V}}\) with two vertices\({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}\), and \({\rm{W}}\)with three vertices \({{\rm{w}}_{\rm{1}}}{\rm{\& }}{{\rm{w}}_{\rm{3}}}\)

All vertices in \({\rm{V}}\)and \({\rm{W}}\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in\({\rm{W}}\).

03

Draw the graph. \({K_{2,2,2}}\)

(b) The vertices of \({{\rm{K}}_{{\rm{2,2,2}}}}\)are divided into three groups: \({\rm{U}}\)with two vertices\({{\rm{u}}_{\rm{1}}}{\rm{\& }}{{\rm{u}}_{\rm{2}}}\), \({\rm{V}}\)with two vertices, \({{\rm{u}}_{\rm{1}}}{\rm{\& }}{{\rm{u}}_{\rm{2}}}\)and \({\rm{W}}\)with two vertices\({{\rm{w}}_{\rm{1}}}{\rm{\& }}{{\rm{w}}_{\rm{2}}}\).

All vertices in \({\rm{V}}\)and \(W\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in\({\rm{W}}\).

04

Draw the graph. \({K_{1,2,2,3}}\)

(c) The vertices of \({{\rm{K}}_{{\rm{1,2,2,3}}}}\)are divided into four groups: \({\rm{U}}\)with one vertex\({{\rm{u}}_{\rm{1}}}\), \({\rm{V}}\) with two vertices\({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}\), \({\rm{W}}\)with two vertices, \({w_1},{w_2}\)and \({\rm{X}}\)with three vertices\({x_{\rm{1}}}{\rm{\& }}{{\rm{x}}_3}\).

All vertices in \({\rm{V,W\& X}}\)are linked to the vertex in\({\rm{U}}\).

All \({\rm{V}}\)vertices must also be linked to all \({\rm{W}}\)and \({\rm{X}}\)vertices.

All of the vertices in \({\rm{W}}\)must be linked to all of the vertices in\({\rm{X}}\).

05

Result.

Therefore,

(a) The vertices of \({{\rm{K}}_{{\rm{1,2,3}}}}\)are divided into three groups: \({\rm{U}}\)with one vertex \({{\rm{u}}_{\rm{1}}}{\rm{,V}}\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}\)and \(W\)with three vertices \({{\rm{w}}_{\rm{1}}}{\rm{,}}{{\rm{w}}_{\rm{2}}}.\)

All vertices in \({\rm{V}}\)and \({\rm{W}}\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in \({\rm{W}}{\rm{.}}\)

(b) The vertices of \({{\rm{K}}_{{\rm{2,2,2}}}}\)are divided into three groups: \({\rm{U}}\)with two vertices \({{\rm{u}}_{\rm{1}}}{\rm{\& }}{{\rm{u}}_{\rm{2}}},V\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}\), and \({\rm{W}}\)with vertices \({{\rm{w}}_{\rm{1}}}{\rm{\& }}{{\rm{w}}_{\rm{2}}}{\rm{.}}\)

All vertices in \({\rm{V\& W}}\)are related to the vertex in\({\rm{U}}\).

All of the vertices in \({\rm{V}}\)must be linked to all of the vertices in \({\rm{W}}{\rm{.}}\)

(c) The vertices of \({{\rm{K}}_{{\rm{1,2,2,3}}}}\)are divided into four groups: \({\rm{U}}\)with one vertex \({{\rm{u}}_{\rm{1}}}{\rm{,V}}\)with two vertices \({{\rm{v}}_{\rm{1}}}{\rm{\& }}{{\rm{v}}_{\rm{2}}}{\rm{,W}}\)two vertices and \({{\rm{w}}_2}\)and \({\rm{X}}\)with three vertices \({{\rm{x}}_{\rm{1}}}{\rm{\& }}{{\rm{x}}_{\rm{3}}}.\)

All vertices in \({\rm{V,W\& X}}\)are linked to the vertex in\({\rm{U}}\).

All \({\rm{V}}\)vertices must also be linked to all \({\rm{W\& X}}\)vertices.

All of the vertices in \({\rm{W}}\)must be linked to all of the vertices in \({\rm{X}}{\rm{.}}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free