Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find \({\mathop{\rm Cov}\nolimits} (X,Y)\) if \(X\) and \(Y\) are the random variables with \(X((i,j)) = 2i\) and \(Y((i,j)) = i + j\), where \(i\) and \(j\) are the numbers that appear on the first and second of two dice when they are rolled.

Short Answer

Expert verified

Answer

The resultant answer \({\mathop{\rm Cov}\nolimits} (X,Y) = \frac{{35}}{6}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is \(X((i,j)) = 2i\)and \(Y((i,j)) = i + j\).

02

Concept of Covariance

Covariance is: \({\mathop{\rm Cov}\nolimits} (X,Y) = E((X - E(X))(Y - E(Y)))\).

Properties expected value:

\(\begin{aligned}{}E\left( {{X_1} + {X_2} + \ldots + {X_n}} \right) &= E\left( {{X_1}} \right) + E\left( {{X_2}} \right) + \ldots + E\left( {{X_n}} \right)\\E(aX + b) &= aE(X) + b\end{aligned}\)

03

Simplify the expression

The expression is:

\(\begin{aligned}{}X((i,j)) = 2i\\Y((i,j)) = i + j\end{aligned}\)

\(i\)and \(j\) are the numbers that appear on the first and second of two dice when they are rolled; \((i = 1,2,3,4,5,6\) and \(j = 1,2,3,4,5,6)\).

Let \(A = i\) (outcome first die) and (outcome second die). Each of the numbers have 1 chance in 6 of occurring:

\(\begin{aligned}{}P(A = i) &= \frac{1}{6}\\P(B = i) &= \frac{1}{6}\end{aligned}\)

The expected value is the sum of the product of each possibility \(x\) with its probability \(P(x)\) :

\(\begin{aligned}{}E(A) &= \sum\limits_{i = 1}^6 i P(A = i)\\E(A) &= \sum\limits_{i = 1}^6 {\frac{1}{6}} i{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \,P(A = i) = \frac{1}{6}\\E(A) &= \frac{1}{6}\sum\limits_{i = 1}^6 i {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} P(A = i) = \frac{1}{6}\\E(A) &= \frac{1}{6} \cdot \frac{{6(6 + 1)}}{2}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{k = 1}^n k = \frac{{n(n + 1)}}{2}\end{aligned}\)

\(E(A) = \frac{7}{2}\)

04

 Step 4: Find the value of \(E\left( {{A^2}} \right)\)

The value of \(E\left( {{A^2}} \right)\):

\(\begin{aligned}{}E\left( {{A^2}} \right) &= \sum\limits_{i = 1}^6 {{i^2}} P(A = i)\\E\left( {{A^2}} \right) &= \sum\limits_{i = 1}^6 {\frac{1}{6}} {i^2}\\E\left( {{A^2}} \right) &= \frac{1}{6}\sum\limits_{i = 1}^6 {{i^2}} \\E\left( {{A^2}} \right) &= \frac{1}{6} \cdot \frac{{6(6 + 1)(2(6) + 1)}}{6}\end{aligned}\)

Similarly,

\(\begin{aligned}{}E\left( {{A^2}} \right) &= \frac{1}{6} \cdot \frac{{6(7)(13)}}{6}\\E\left( {{A^2}} \right) &= \frac{{91}}{6}\end{aligned}\)

\(\begin{aligned}{}E\left( {{B^2}} \right) &= E\left( {{A^2}} \right)\\E\left( {{B^2}} \right) &= \frac{{91}}{6}\end{aligned}\)

05

Find the value of \(E\left( {AB} \right)\)

The value of \(E(AB)\):

\(\begin{aligned}{}E(AB) &= \sum\limits_{j = 1} {\sum\limits_{i = 1} i } jP(A = i,B = j)\\E(AB) &= \frac{1}{{36}}\sum\limits_{j = 1}^6 {\sum\limits_{i = 1}^6 i } j\\E(AB) &= \frac{1}{{36}}\sum\limits_{j = 1}^6 {\sum\limits_{i = 1}^6 i } j\\E(AB) &= \frac{1}{{36}}\sum\limits_{j = 1}^6 j \cdot \frac{{6(6 + 1)}}{2}\end{aligned}\)

Similarly,

\(E(AB) = \frac{1}{{36}}\sum\limits_{j = 1}^6 2 1j\)

\(E(AB) = \frac{{21}}{{36}}\sum\limits_{j = 1}^6 j \)

\(E(AB) = \frac{7}{{12}}(21)\)

\(E(AB) = \frac{{49}}{4}\)

06

Determine the covariance

Then, the covariance;

\(\begin{aligned}{}{\mathop{\rm Cov}\nolimits} (X,Y) &= E(XY) - E(X)E(Y)\\{\mathop{\rm Cov}\nolimits} (X,Y) &= E(2A(A + B)) - E(2A)E(A + B){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} X = 2A;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} Y = A + B\\{\mathop{\rm Cov}\nolimits} (X,Y) &= 2E\left( {{A^2}} \right) + 2E(AB) - 2{(E(A))^2} - 2E(A)E(B){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} P(A = i) = \frac{1}{6}\\{\mathop{\rm Cov}\nolimits} (X,Y) &= 2 \cdot \frac{{91}}{6} + 2 \cdot \frac{{49}}{4} - 2{\left( {\frac{7}{2}} \right)^2} - 2{\left( {\frac{7}{2}} \right)^2}\\{\mathop{\rm Cov}\nolimits} (X,Y) &= \frac{{35}}{6}\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free