Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Show that \(V(X + Y) = V(X) + V(Y) + 2{\mathop{\rm Cov}\nolimits} (X,Y).\)

Short Answer

Expert verified

Answer

The resultant answer \(V(X + Y) = V(X) + V(Y) + 2{\mathop{\rm Cov}\nolimits} (X,Y)\)is proved

Step by step solution

01

 Step 1: Given data

The given data is \(V(X + Y) = V(X) + V(Y) + 2{\mathop{\rm Cov}\nolimits} (X,Y)\).

02

Concept of Covariance

Covariance is:\({\mathop{\rm Cov}\nolimits} (X,Y) = E((X - E(X))(Y - E(Y)))\).

03

Proof the expression

Expression is:

\(\begin{aligned}{}{\rm{V}}({\rm{X}} + Y) &= E\left( {{{(X + Y)}^2}} \right) - {(E(X + Y))^2}\\ &= E\left( {{X^2} + {Y^2} + 2XY} \right) - {(E(X) + E(Y))^2}\\ &= E\left( {{X^2}} \right) + E\left( {{Y^2}} \right) + 2E(XY) - {(E(X))^2} - {(E(Y))^2} - 2E(X)E(Y)\\ &= V(X) + V(Y) + 2{\mathop{\rm Cov}\nolimits} (X,Y)\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free