Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:What is the variance of the number of fixed elements, that is, elements left in the same position, of a randomly selected permutation of \(n\) elements?(Hint:Let Xdenote the number of fixed points of a random permutation. Write

\(X = {X_1} + {X_2} + ..... + {X_n}\), where \({X_I} = 1\) if the permutation fixes the ith element and \({X_I} = 0\)otherwise.]

Short Answer

Expert verified

Answer

The resultant answer is \({\mathop{\rm Var}\nolimits} (X) = 1\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is \(n\) elements.

02

Concept of Permutation

Definition permutation (order is important): \(P(n,r) = \frac{{n!}}{{(n - r)!}}\)

Definition combination (order is not important):\(C(n,r) = \left( {\begin{aligned}{{}{}}n\\r\end{aligned}} \right) = \frac{{n!}}{{r!(n - r)!}}\)

with \(n! = n \cdot (n - 1) \cdot \ldots \cdot 2 \cdot 1\).

03

Simplify by using concept of permutation

Let\(X = \sum\limits_{i = 1}^n {{X_i}} \)be the no. of fixed points of a random permutation of \(n\) elements, where \({X_i} = 1\)if the \(i\)-the elementis fixed and 0 otherwise.

\(\begin{aligned}{}E\left( {{X_i}} \right) &= 1.P\left( {{X_i} = 1} \right) + 0.P\left( {{X_i} = 0} \right)\\E\left( {{X_i}} \right) &= \frac{{(n - 1)!}}{{n!}}\\E\left( {{X_i}} \right) &= \frac{1}{n}\forall 1 \le i \le n\end{aligned}\).

Also observe that:

\(\begin{aligned}{}E\left( {X_i^2} \right) &= E\left( {{X_i}} \right)\\E\left( {X_i^2} \right) &= \frac{1}{n}\end{aligned}\)

and

\(\begin{aligned}{}E\left( {{X_i}{X_j}} \right) &= 1.P\left( {{X_i}{X_j} = 1} \right)\\E\left( {{X_i}{X_j}} \right) &= P\left( {\left\{ {{X_i} = 1} \right\} \cap \left\{ {{X_j} = 1} \right\}} \right)\\E\left( {{X_i}{X_j}} \right) &= \frac{{(n - 2)!}}{{n!}}\\E\left( {{X_i}{X_j}} \right)& = \frac{1}{{n(n - 1)}}\end{aligned}\).

Similarly,

\(\begin{aligned}{}E\left( {{X^2}} \right) &= \sum\limits_{i = 1}^n E \left( {X_i^2} \right) + 2\sum\limits_{i < j} E \left( {{X_i}{X_j}} \right)\\E\left( {{X^2}} \right) &= n \cdot \frac{1}{n} + 2 \cdot \left( {\begin{aligned}{*{20}{l}}n\\2\end{aligned}} \right) \cdot \frac{1}{{n(n - 1)}}\\E\left( {{X^2}} \right) &= 2\end{aligned}\)

Hence,

\(\begin{aligned}{}{\mathop{\rm Var}\nolimits} (X) &= E\left( {{X^2}} \right) - E{(X)^2}\\{\mathop{\rm Var}\nolimits} (X) &= 2 - {\left( {n \cdot \frac{1}{n}} \right)^2}\\{\mathop{\rm Var}\nolimits} (X) &= 1\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free