Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:In this exercise we find the average-case complexity of the quick sort algorithm, described in the preamble to Exercise 50 in Section 5.4, assuming a uniform distribution on the set of permutations.

(a) Let\(X\)b e the number of comparisons used by the quick sort algorithm to sort a list of\(n\)distinct integers. Show that the average number of comparisons used by the quick sort algorithm is\(E(X)\)(where the sample space is the set of all\(n!\)permutations of\(n\)integers).

(b) Let\({I_{j,k}}\)denote the random variable that equals 1 if the\(j - th\)smallest element and the\(k - th\)smallest element of the initial list are ever compared as the quick sort algorithm sorts the list and equals 0 otherwise. Show that\(X = \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {{I_{j,k}}} } \).

(c) Show that\(E(X) = \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} p } \)(the\(j - th\)smallest element and the\(k - th\)smallest element are compared).

(d) Show that\(p\)(the\(j - th\)smallest element and the\(k - th\)smallest element are compared), where\(k > j\), equals\(2/(k - j + 1)\).

(e) Use parts (c) and (d) to show that\(2(n + 1)\left( {\sum\limits_{i = 2}^n 1 /i} \right) - 2(n - 1)\).

(f) Conclude from part (e) and the fact that \(\sum\limits_{j = 1}^{nt} 1 /j \approx \)\(\ln n + \gamma \), where \(\gamma = 0.57721 \ldots \) is Euler's constant, that the average number of comparisons used by the quick sort algorithm is \(\Theta (n\log n)\).

Short Answer

Expert verified

Answer

(a) \(E(X)\) is equal to the average over all permutations.

(b) The resultant answer is \(X = \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {{I_{j,k}}} } \).

(c) The resultant answer is\(E(I) = \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} P } \left( {{I_{j,k}} = 1} \right)\).

(d) The resultant answer is\(P\left( {{I_{j,k}} = 1} \right) = \frac{2}{{k - j + 1}}\).

(e) The resultant answer is\(E(X) = 2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1)\).

(f) The resultant answer is\(E(X) = \Theta (n\log n)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is the different expressions.

02

Concept of Quick sort 

Quick sort keeps dividing the given list in a list with all elements smaller than the first element and a list with all elements larger than the first element.The first element is then added at the end of the first sublist. We repeat the use of the algorithm until we obtain sublists of one element.Combining all the sublists then gives the sorted list

03

Find the probability

(a)

Each of the \(n!\) permutations are equally likely, thus the probability to select a particular permutation is then 1 chancy in \(n!\)

\(P(X = i) = \frac{1}{{n!}}\); \(i\) represents the \(i - th\) permutation in lexicographic order.

The expected value is the sum of the product of each possibility with its probability \(P(x)\) :

\(\begin{aligned}{c}E(X) &= \sum\limits_{i = 1}^{n!} i P(X = i)\\E(X) &= \sum\limits_{i = 1}^{n!} {\frac{i}{{n!}}} \\E(X) &= \frac{1}{{n!}}\sum\limits_{i = 1}^{n!} i \end{aligned}\)

We then note that the average number of comparisons \(E(X)\) is equal to the average over all permutations.

04

Compare the smallest element of the initial list

(b)

\({I_{j,k}}(P) = 1\)if the \(j - th\)smallest and \(k - th\) smallest element of the initial list is compared.

\({I_{j,k}}(P) = 0\)otherwise.

The \(j - th\)smallest and \(k - th\)smallest element of the initial list are compared exactly once, because if \(j - th\) was the integer that was compared with all other integers (to divide into two sublist), then the \(j - th\) integer will not be checked again (as the \(j - th\)integer will be placed between the two sublist).

Since \(X\) measures the number of comparisons and since each comparison between the \(j - th\) smallest and \(k - th\)smallest element occurs at most once:

\(\begin{aligned}{c}X &= \sum\limits_k {\sum\limits_{j < k}^n {{I_{j,k}}} } \\X &= \sum\limits_{k = 2}^{k - 1} {\sum\limits_{j = 1}^k {{I_{j,k}}} } \end{aligned}\).

05

Find the probability \(P(x)\)

(c)

Let \(p\) be the probability that \({I_{j,k}} = 1\)

\(p = P\left( {{I_{j,k}} = 1} \right)\)

\({I_{j,k}}\)then represents 1 Bernoulli trial with a constant probability of success of \(p = P\left( {{I_{j,k}} = 1} \right)\);\(n = 1\)

The expected number of successes among a fixed number \(n\) of mutually independent Bernoulli trials is \(np\), with \(p\) the constant probability of success.

\(\begin{aligned}{l}E\left( {{I_{j,k}}} \right) &= np\\E\left( {{I_{j,k}}} \right) &= 1 \cdot P\left( {{I_{j,k}} = 1} \right)\\E\left( {{I_{j,k}}} \right) &= P\left( {{I_{j,k}} = 1} \right)\end{aligned}\)

The expected value is the sum of the product of each possibility \(x\) with its probability \(P(x)\) :

\(\begin{aligned}{l}E(X) &= \sum\limits_k {\sum\limits_{j < k} E } \left( {{I_{j,k}}} \right)\\E(X) &= \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} E } \left( {{I_{j,k}}} \right)\\E(X) &= \sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} P } \left( {{I_{j,k}} = 1} \right)\end{aligned}\).

06

Compare the integers

(d)

Let \(P(n)\) be "P \(\left. {(I{\kern 1pt} {\kern 1pt} {I_{j,k}} = 1} \right) = \frac{2}{{k - j + 1}}\)

Basis step \(n = 2\)

When \(n = 2\), then \(j = 1\) and \(k = 2\)(as \(j < k\) ) will result in \({I_{j,k}} = 1\)

\(\begin{aligned}{l}\frac{2}{{k - j + 1}} &= \frac{2}{{2 - 1 + 1}}\\\frac{2}{{k - j + 1}} &= \frac{2}{2}\\\frac{2}{{k - j + 1}} &= 1\end{aligned}\)

When there are 2 elements in the permutation, then these two elements are compared exactly once (to determine their correct order).

Induction step:

We assume that \(P(2,),P(3), \ldots ,P(k - 1)\),is true and \(P\left( {{I_{j,k}} = 1} \right) = \frac{2}{{k - j + 1}}\) is true for all permutations with \(2,3, \ldots .,k - 1\) elements.

Let us now have a permutation with \(k\) elements

07

Consider the elements and simplify it

Let us first consider the element in first position (thus in the first round of the algorithm, which we assume is the \(i - th\) smallest element.

(1) If \(j < i < k\), then the \(j - th\)smallest element and \(k - th\)smallest element get put in different sublist In this case, the \(j - th\)and \(k - th\)element will not be compared. Since \(j < i < k\) occurs for \(k - (j + 1)\) possible integer values:

\(\begin{aligned}{l}P(j < k < i) &= \frac{{k - (j + 1)}}{n}\\P(j < k < i) &= \frac{{k - j - 1}}{n}P\left( {{I_{j,k}} = 1\mid j < k < i} \right)\\P(j < k < i) &= 0\end{aligned}\).

(2) If \(i = j\) or \(i = k\), then the \(j - th\)smallest element and \(k - th\) smallest element will be compared in this round. Since \(i = j\) or \(i = k\) is 2 cases out of the \(n\) possible integer values:

\(\begin{aligned}{l}P(i = j{\rm{ or }}i = k) = \frac{2}{n}P\left( {{I_{j,k}} = 1\mid i = j{\rm{ or }}i = k} \right)\\P(i = j{\rm{ or }}i = k) = 1\end{aligned}\).

08

Consider the elements and simplify it further

(3) If \(j < i < k\), then the \(j - th\) smallest element and \(k - th\) smallest element will be compared in one of the next rounds. Using the induction hypothesis:

\(P\left( {{I_{j,k}} = 1\mid i < j < k} \right) = \frac{2}{{k - j + 1}}\)

Since \(i < j < k\) occurs for \(j - 1\) cases out of \(n\) possible integers:

\(P(i < j < k) = \frac{{j - 1}}{n}\).

(4) If \(j < k < i\), then the \(j - th\) smallest element and \(k - th\) smallest element will be compared in one of the next rounds. Using the induction hypothesis:

\(P\left( {{I_{j,k}} = 1\mid j < k < i} \right) = \frac{2}{{k - j + 1}}\)

Since \(j < k < i\) occurs for \(n - k\) cases out of \(n\) possible integers:

\(P(j < k < i) = \frac{{n - k}}{n}\).

09

Use the law of total probability and simplify the expression

Using the law of total probability :

\(\begin{aligned}{l}P\left( {{I_{j,k}} = 1} \right) = &P(j < k < i)P\left( {{I_{j,k}} = 1\mid j < k < i} \right) + P(i = j{\rm{ or }}i = k)P\left( {{I_{j,k}} = 1\mid i = j{\rm{ or }}i = k} \right)\\ + P(i < j < k)P\left( {{I_{j,k}} = 1\mid i < j < k} \right) + P(j < k < i)P\left( {{I_{j,k}} = 1\mid j < k < i} \right)\\P\left( {{I_{j,k}} = 1} \right) &= \frac{{k - j - 1}}{n} \cdot 0 + \frac{2}{n} \cdot 1 + \frac{{j - 1}}{n} \cdot \frac{2}{{k - j + 1}} + \frac{{n - k}}{n} \cdot \frac{2}{{k - j + 1}}\\P\left( {{I_{j,k}} = 1} \right) &= \frac{2}{n} + \frac{{2(j - 1)}}{{n(k - j + 1)}} + \frac{{2(n - k)}}{{n(k - j + 1)}}\end{aligned}\)

Similarly,

\(\begin{aligned}{c}P\left( {{I_{j,k}} = 1} \right) &= \frac{{2(k - j + 1)}}{{n(k - j + 1)}} + \frac{{2(j - 1)}}{{n(k - j + 1)}} + \frac{{2(n - k)}}{{n(k - j + 1)}}\\ &= \frac{{2(k - j + 1) + 2(j - 1) + 2(n - k)}}{{n(k - j + 1)}}\\ &= \frac{{2k - 2k + 2 + 2k - 2 + 2n - 2k}}{{n(k - j + 1)}}\\ &= \frac{{2n}}{{n(k - j + 1)}}\end{aligned}\)

\(P\left( {{I_{j,k}} = 1} \right) = \frac{2}{{k - j + 1}}\)

By the principle of strong induction, \(P(n)\) is true for all positive integers \(n\) with \(n \ge 2\).

10

Simplify the expression

(e)

Let;

\(P(n)\) be \(\sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } = 2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1)\)

Basis step \(n = 2(j = 1\) and \(k = 2)\)

\(\begin{aligned}{l}\sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } &= \frac{2}{{2 - 1 + 1}}\\\sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } &= \frac{2}{2}\\\sum\limits_{k = 2}^n {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } &= 1\end{aligned}\)

Similarly,

\(\begin{aligned}{l}2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1) &= 2(2 + 1)\left( {\frac{1}{2}} \right) - 2(2 - 1)\\2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1) &= 6\left( {\frac{1}{2}} \right) - 2\\2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1) &= 3 - 2\\2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1) &= 1\end{aligned}\)

Thus \(P(2)\) is true.

11

Use the induction step and simplify it

Induction step we assume that \(P(m - 1)\) is true

\(\sum\limits_{k = 2}^{m - 1} {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } = 2m\left( {\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} } \right) - 2(m - 2)\)

We need to proof that \(P(m)\) is also true.

\(\begin{aligned}{l}2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2m\sum\limits_{i = 2}^m {\frac{1}{i}} + 2\sum\limits_{i = 2}^m {\frac{1}{i}} - 2m - 2\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2m \cdot \frac{1}{m} + 2\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2 \cdot \frac{1}{m} - 2m - 2\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2 + 2\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2 \cdot \frac{1}{m} - 2m - 2\end{aligned}\)

Similarly,

\(\begin{aligned}{l}2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2 \cdot \frac{1}{m} - 2m\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} + 2\sum\limits_{i = 2}^m {\frac{1}{i}} - 2m - 4 + 4\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= \left( {2\sum\limits_{i = 2}^m {\frac{1}{i}} + 4} \right) + 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} - 2(m - 2)\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} + 2} \right) + 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} - 2(m - 2)\end{aligned}\)

Simplify further;

\(\begin{aligned}{l}2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2\left( {\sum\limits_{i = 1}^m {\frac{1}{i}} + 1} \right) + 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} - 2(m - 2)\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= 2\left( {\sum\limits_{j = 1}^{m - 1} {\frac{1}{{k - j + 1}}} } \right) + 2m\sum\limits_{i = 2}^{m - 1} {\frac{1}{i}} - 2(m - 2)\\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= \sum\limits_{j = 1}^{m - 1} {\frac{2}{{k - j + 1}}} + \sum\limits_{k = 2}^{m - 1} {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } \\2(m + 1)\left( {\sum\limits_{i = 2}^m {\frac{1}{i}} } \right) - 2(m - 1) &= \sum\limits_{k = 2}^m {\sum\limits_{j = 1}^{k - 1} {\frac{2}{{k - j + 1}}} } \end{aligned}\)

Thus is also true

By the principle of strong induction, \(P(n)\) is true for all positive integers \(n\) with \(n \ge 2\).

12

Use the result and simplify the equation

(f)

Use the result of part (e):

\(\begin{aligned}{c}E(X) = 2(n + 1)\left( {\sum\limits_{i = 2}^n {\frac{1}{i}} } \right) - 2(n - 1)\\ \approx 2(n + 1)(\ln n + \gamma - 1) - 2(n - 1)\quad \sum\limits_{j = 1}^n {\frac{1}{j}} \approx \ln n + \gamma \end{aligned}\)

\(\begin{aligned}{c}E(X) &= 2n\ln n + 2(n + 1)(\gamma - 1) + 2(\ln n + \gamma - 1) - 2(n - 1)\\E(X) &= \Theta (n\ln n)\\E(X) &= \Theta (n\log n)\end{aligned}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free