Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: What is the expected number times a 6 appears when a fair die is rolled 10 times?

Short Answer

Expert verified

Answer

The expected number times a 6 appears when a fair die is rolled 10 times is 1.667

Step by step solution

01

Given Information  

A fair die

02

Definition of Integral and Integration  

Probability distribution Types: Discrete Probability distribution and Continuous probability distribution. They each define Discrete and Continuous random variables respectively.

Discrete Probability distribution gives the probability that a discrete random variable will have a specified value. Such a distribution will represent data that has a finite countable number of outcomes. The two conditions discrete probability distributions must satisfy are:

  • \({\bf{0}}{\rm{ }} \le {\rm{ }}{\bf{P}}\left( {{\bf{X}}{\rm{ }} = {\rm{ }}{\bf{x}}} \right){\rm{ }} \le {\rm{ }}{\bf{1}}\). This implies that the probability of a discrete random variable,\({\bf{X}}\), taking on an exact value,\({\bf{x}}\), lies between\({\bf{0}}\)and\({\bf{1}}\)
  • \(\sum {\bf{P}}\left( {{\bf{X}}{\rm{ }} = {\rm{ }}{\bf{x}}} \right){\rm{ }} = {\bf{1}}\). The sum of all probabilities must be equal to\({\bf{1}}\)

Some commonly used Discrete probability distributions are Geometric distributions, binomial distributions and Bernoulli distributions

03

Calculation of the expected number of times a 6 appears when a fair die is rolled 10 times

The expected number of successes for\(n\)Bernoulli trials is\(np\).In the present problem we have,

\(n = 10,p = \frac{1}{6}\)

Therefore, the expected number of successes ((i.e.) appearance of a 6) is

\(E(X) = np\)

\(\begin{array}{l} = 10 \times \frac{1}{6}\\ = 1.667\end{array}\)

Therefore, on rolling a fair die 10 times, the expected number times a 6 appears is 1.667

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 2. To determine

  1. What is the probability that two people chosen at random were born during the same month of the year?
  2. What is the probability that in a group ofnpeople chosen at random, there are at least two born in the same month of the year?
  3. How many people chosen in random are needed to make the probability greater than12that there are at least two people born in the same month of the year?

Question: Find the probability of winning a lottery by selecting the correct six integers, where the order in which these integers are selected does not matter, from the positive integers not exceeding.

(a) 30.

(b) 36.

(c) 42.

(d) 48.

Question: To determine the probability of each outcome when a biased die is rolled, if rolling a 2or rolling a4 is three times as likely as rolling each of the other four numbers on the die and it is equally likely to roll a 2ora4 .

Question 2. To determine

  1. What is the probability that two people chosen at random were born during the same day of the week?
  2. What is the probability that in group ofnpeople chosen at random there are at least two born in the same day of the week?
  3. How many people chosen in random are needed to make the probability greater than12that there are at least two people born in the same day of the week?

Question: Suppose that we have prior information concerning whether a random incoming message is spam. In particular, suppose that over a time period, we find that s spam messages arrive and h messages arrive that are not spam.

a) Use this information to estimate p(S), the probability that an incoming message is spam, and\(p(\bar S)\), the probability an incoming message is not spam.

b) Use Bayesโ€™ theorem and part (a) to estimate the probability that an incoming message containing the word w is spam, where p(w)is the probability that w occurs in a spam message and q(w) is the probability that w occurs in a message that is not spam.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free