Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Prove the general case of Theorem 7. That is, show that if \({X_1},{X_2}, \ldots ,{X_n}\) are pairwise independent random variables on a sample space \(S\), where \(n\) is a positive integer, then \(V\left( {{X_1} + {X_2} + \cdots + {X_n}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \cdots + V\left( {{X_n}} \right)\). (Hint: Generalize the proof given in Theorem 7 for two random variables. Note that a proof using mathematical induction does not work; sec.

Short Answer

Expert verified

Answer

Proved using mathematical induction \(V\left( {{X_1} + {X_2} + \ldots \ldots .. + {X_n}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \ldots .. + V\left( {{X_n}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

In the problem given  

\({X_1} + {X_2} + \ldots \ldots .. + {X_n}\) are pairwise independent random variables on a sample space \(s\), where \(n\) is a positive integer.

02

The definition and the formula for the given problem

Let

\(V\left( {{X_1} + {X_2} + {X_3} + \ldots \ldots \ldots .. + {X_k} + {X_{k + 1}}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \ldots \ldots .. + V\left( {{X_k}} \right) + V\left( {{X_{k + 1}}} \right)\)

It would be assumed that\({X_1} + {X_2} + {X_3} + \ldots \ldots \ldots \ldots . + {X_k}\)and\({x_{k + 1}}\)are independent, which is not true for this case\(\sin \theta ,{X_1} + {X_2}\)and\({X_3}\)are not independent.

Therefore, it would not be possible to proof by mathematical induction.

03

Determining the sum in expanded form

Variance \(V(X) = E{(X)^2} - {(E(X))^2}\)

\(\begin{aligned}{c} &= \left\{ {E{{\left( {{X_1} + {X_2} + \ldots \ldots \ldots .. + {X_n}} \right)}^2}} \right\} - {\left\{ {E\left( {{X_1} + {X_2} + \ldots \ldots .. + {X_n}} \right)} \right\}^2}\\= E\left( {\begin{aligned}{{}{}}{X_1^2 + X_2^2 + \ldots \ldots \ldots \ldots .... + X_n^2 + {X_1}{X_2} + {X_1}{X_3} + \ldots \ldots \ldots \ldots ... + {X_1}{X_n} + {X_2}{X_1}}\\{ + {X_2}{X_3} + \ldots \ldots \ldots \ldots ... + {X_2}{X_n} + \ldots .. + {X_n}{X_1} + {X_n}{X_2} + \ldots \ldots \ldots ... + {X_n}{X_{n - 1}}}\end{aligned}} \right)\\ - {\left\{ {E\left( {{X_1}} \right) + E\left( {{X_2}} \right) + \ldots \ldots \ldots ... + E\left( {{X_n}} \right)} \right\}^2}\\ &= E\left( {X_1^2} \right) + E\left( {X_2^2} \right) + \ldots \ldots E\left( {X_n^2} \right) + E\left( {{X_1}{X_2}} \right) + E\left( {{X_1}{X_3}} \right) + \ldots ..\\ + E\left( {{X_1}{X_n}} \right) + E\left( {{X_2}{X_1}} \right) + E\left( {{X_2}{X_3}} \right) + \ldots .. + E\left( {{X_2}{X_n}} \right) + \ldots \\ + E\left( {{X_n}{X_1}} \right) + E\left( {{X_n}{X_2}} \right) + \ldots \ldots . + E\left( {{X_n}{X_{n - 1}}} \right) - E{\left( {{X_1}} \right)^2} - E{\left( {{X_2}} \right)^2}\\ \ldots \ldots E{\left( {{X_n}} \right)^2} - E\left( {{X_1}} \right)E\left( {{X_2}} \right) - E\left( {{X_1}} \right)E\left( {{X_3}} \right) \ldots \ldots ..E\left( {{X_1}} \right)E\left( {{X_n}} \right)\\ - E\left( {{X_2}} \right)E\left( {{X_1}} \right) - E\left( {{X_2}} \right)E\left( {{X_3}} \right) \ldots \ldots E\left( {{X_2}} \right)E\left( {{X_n}} \right) \ldots ..\\E\left( {{X_n}} \right)E\left( {{X_1}} \right) + E\left( {{X_n}} \right)E\left( {{X_2}} \right) + \ldots .. + E\left( {{X_n}} \right)E\left( {{X_{n - 1}}} \right)\end{aligned}\)

As \(X\) and \({\rm{Y}}\) are independent, we have \(E(XY) = E(X).E(Y)\)

So,

\(\begin{aligned}{c}V\left( {{X_1} + {X_2} + \ldots \ldots .. + {X_n}} \right) &= E\left( {X_1^2} \right) + E\left( {X_2^2} \right) + \ldots \ldots .. + E\left( {X_n^2} \right) - E\left( {X_1^2} \right) - E\left( {X_2^2} \right) \ldots \ldots .E{\left( {{X_n}} \right)^2}\\\left.{= \left\{ {E\left( {X_1^2} \right) - {{\left( {E\left( {{X_1}} \right)} \right)}^2}} \right\} + \left\{ {E\left( {X_2^2} \right) - {{\left( {E\left( {{X_2}} \right)} \right)}^2}} \right\} + \ldots \ldots . + E\left( {X_n^2} \right) - E{{\left( {{X_n}} \right)}^2}} \right\}\\ &= V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \ldots .. + V\left( {{X_n}} \right)\end{aligned}\)

\(V\left( {{X_1} + {X_2} + \ldots \ldots .. + {X_n}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \ldots .. + V\left( {{X_n}} \right)\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free