Chapter 7: Q34E (page 493)
Question: Prove the general case of Theorem 7. That is, show that if \({X_1},{X_2}, \ldots ,{X_n}\) are pairwise independent random variables on a sample space \(S\), where \(n\) is a positive integer, then \(V\left( {{X_1} + {X_2} + \cdots + {X_n}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \cdots + V\left( {{X_n}} \right)\). (Hint: Generalize the proof given in Theorem 7 for two random variables. Note that a proof using mathematical induction does not work; sec.
Short Answer
Answer
Proved using mathematical induction \(V\left( {{X_1} + {X_2} + \ldots \ldots .. + {X_n}} \right) = V\left( {{X_1}} \right) + V\left( {{X_2}} \right) + \ldots .. + V\left( {{X_n}} \right)\)