Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Show that if\(X\) and \(Y\) are independent random variables, then \(V\left( {XY} \right) = E{\left( X \right)^2}V\left( Y \right) + E{\left( Y \right)^2}V\left( X \right) + V\left( X \right)V\left( Y \right)\)

Short Answer

Expert verified

Answer

The statement \(V\left( {XY} \right) = E{\left( X \right)^2}V\left( Y \right) + E{\left( Y \right)^2}V\left( X \right) + V\left( X \right)V\left( Y \right)\) is proved if \(X\) and \(Y\) are independent random variables.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given information

\(X\) and \(Y\) are independent random variables.

02

Definition and formula used

A random variable is a mathematical formalization of a quantity or object which depends on random events.

03

Calculation  

Simplify the right hand side by substitution.

\(\begin{aligned}{c}E{\left( X \right)^2}V\left( Y \right) + E{\left( Y \right)^2}V\left( X \right) + V\left( X \right)V\left( Y \right) &= E{\left( X \right)^2}\left( {E\left( {{Y^2}} \right) - E{{\left( Y \right)}^2}} \right) + E{\left( Y \right)^2}\left( {E\left( {{X^2}} \right) - E{{\left( X \right)}^2}} \right) + \\\left( {E\left( {{X^2}} \right) - E{{\left( X \right)}^2}} \right)\left( {E\left( {{Y^2}} \right) - E{{\left( Y \right)}^2}} \right)\\ &= E{\left( X \right)^2}E\left( {{Y^2}} \right) - E{\left( X \right)^2}E{\left( Y \right)^2} + E{\left( Y \right)^2}E\left( {{X^2}} \right) - E{\left( Y \right)^2}E{\left( X \right)^2}\\ + E\left( {{X^2}} \right)E\left( {{Y^2}} \right) - E\left( {{X^2}} \right)E{\left( Y \right)^2} - E{\left( X \right)^2}E\left( {{Y^2}} \right) - E{\left( X \right)^2}E{\left( Y \right)^2}\\ &= E\left( {{X^2}} \right)E\left( {{Y^2}} \right) - E{\left( X \right)^2}E{\left( Y \right)^2}\\ &= E\left( {{{\left( {XY} \right)}^2}} \right) - E{\left( {XY} \right)^2}\\ &= Var\left( {xy} \right)\end{aligned}\)

Hence proved.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free