Since X1 , X2, X3….. Xn are mutually independent random variables.
\(P\left( {\bigcap\limits_{i = 1}^n {{X_i}} = {x_i}} \right) = \prod\limits_{i = 1}^n {P\left( {{X_i} = {x_i}} \right)} \)
\(\begin{array}{l}E\left( {\coprod\limits_{i = 1}^n {{X_i}} } \right) = \sum {{x_1}} {x_2}....{x_n}.P\left( {\bigcap\limits_{i = 1}^n {{X_i}} = {x_i}} \right)\\\begin{array}{*{20}{c}}{}&{}&{}&{}\end{array} = \sum {.\sum {.....} } \sum {{x_1}} {x_2}....{x_n}.\left( {\prod\limits_{i = 1}^n {P\left( {{X_i} = {x_i}} \right)} } \right)\\\begin{array}{*{20}{c}}{}&{}&{}&{}\end{array} = \sum {{x_1}} .P\left( {{X_1} = {x_1}} \right).\sum {{x_2}} .P\left( {{X_2} = {x_2}} \right)......\sum {{x_n}} .P\left( {{X_n} = {x_n}} \right)\\\begin{array}{*{20}{c}}{}&{}&{}&{}\end{array} = \left( {\prod\limits_{i = 1}^n {E\left( {{X_i}} \right)} } \right)\end{array}\)