Chapter 7: Q16SE (page 496)
Question: Suppose that \({E_1}\;,\;{E_2}\;, \ldots ,\;{E_n}\) are \(n\) events with \(p\left( {{E_i}} \right) > 0\) for \(i = 1\;,\;2\;, \ldots ,\;n\). Show that
\(P\left( {{E_1} \cap {E_2} \cap \cdots \cap {E_n}} \right) = P\left( {{E_1}} \right)P\left( {{E_2}\mid {E_1}} \right)P\left( {{E_3}\mid {E_1} \cap {E_2}} \right) \cdots P\left( {{E_n}\mid {E_1} \cap {E_2} \cap \cdots \cap {E_{n - 1}}} \right)\)
Short Answer
Answer
The equation \(P\left( {{E_1} \cap {E_2} \cap \ldots .. \cap {E_n}} \right) = P\left( {{E_1}} \right)P\left( {{E_2}\mid {E_1}} \right)P\left( {{E_3}\mid {E_1} \cap {E_2}} \right) \ldots ..P\left( {{E_n}\mid {E_1} \cap {E_2} \cap \ldots ..{E_{n - 1}}} \right)\) has been proved.