Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Show that if the random variable \(X\) has the geometric distribution with parameter \(p\), and \(j\) is a positive integer, then \({\bf{p}}\left( {{\bf{X}}{\rm{ }} \ge {\rm{ }}{\bf{j}}} \right){\rm{ }} = {\rm{ }}\left( {{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{p}}} \right){\bf{j}} - {\bf{1}}\).

Short Answer

Expert verified

Answer:

The random variable \(X\) has the geometric distribution with parameter\(p\), and \(j\) is a positive integer \({\bf{p}}\left( {{\bf{X}}{\rm{ }} \ge {\rm{ }}{\bf{j}}} \right){\rm{ }} = {\rm{ }}\left( {{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{p}}} \right){\bf{j}} - {\bf{1}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given information

The random variable \(X\) has the geometric distribution with parameter\(p\), and \(j\) is a positive integer

02

Step 2: Definition

A random variable\(X\)has a geometric distribution with parameter p if \(E(x) = \frac{1}{p}\)

\(p(X = k) = {(1 - p)^{k - 1}}p\)where p is a real number with\(0 \le p \le 1\)

Theorem: If the random variable \(X\) has the geometric distribution with parameter \(p\), then \(E(x) = \frac{1}{p}\)

03

Step 3: Calculate the geometric distribution

\(\begin{array}{l}\sum\limits_{k = 1}^\infty {P(X \ge j)} \\ = \sum\limits_{k = j}^\infty {p(X = k)} \\ = \sum\limits_{k = j}^\infty {{{(1 - p)}^{k - 1}}p} \\ = p\sum\limits_{k = j}^\infty {{{(1 - p)}^{k - 1}}} \\ = p{(1 - p)^{j - 1}}\sum\limits_{k = 0}^\infty {{{(1 - p)}^k}} \\ = p{(1 - p)^{j - 1}}.\frac{1}{{1 - (1 - p)}}\\ = p{(1 - p)^{j - 1}}.\frac{1}{p}\\ = {(1 - p)^{j - 1}}\end{array}\)

Thus, it can be concluded thatthe random variable \(X\) has the geometric distribution with parameter\(p\), and \(j\) is a positive integer\({\bf{p}}\left( {{\bf{X}}{\rm{ }} \ge {\rm{ }}{\bf{j}}} \right){\rm{ }} = {\rm{ }}\left( {{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{p}}} \right){\bf{j}} - {\bf{1}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free