Chapter 7: Q15E (page 492)
Question: Show that if the random variable \(X\) has the geometric distribution with parameter \(p\), and \(j\) is a positive integer, then \({\bf{p}}\left( {{\bf{X}}{\rm{ }} \ge {\rm{ }}{\bf{j}}} \right){\rm{ }} = {\rm{ }}\left( {{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{p}}} \right){\bf{j}} - {\bf{1}}\).
Short Answer
Answer:
The random variable \(X\) has the geometric distribution with parameter\(p\), and \(j\) is a positive integer \({\bf{p}}\left( {{\bf{X}}{\rm{ }} \ge {\rm{ }}{\bf{j}}} \right){\rm{ }} = {\rm{ }}\left( {{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{p}}} \right){\bf{j}} - {\bf{1}}\).