Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Suppose that \(E, {F_1},{F_2}\,and {F_3}\)are events from a sample space S and that \({F_1},{F_2}\,and {F_3}\) are pair wise disjoint and their union is S. Find \(p\left( {\frac{{{F_2}}}{E}} \right)\)if \(p\left( {\frac{E}{{{F_1}}}} \right) = \frac{2}{7},p\left( {\frac{E}{{{F_2}}}} \right) = \frac{3}{8},p\left( {\frac{E}{{{F_3}}}} \right) = \frac{1}{2},p\left( {{F_1}} \right) = \frac{1}{6},p\left( {{F_2}} \right) = \frac{1}{2}\) and \(p\left( {{F_3}} \right) = \frac{1}{3}\)

Short Answer

Expert verified

Answer:

\(p\left( {\frac{{{F_2}}}{E}} \right) = 0.4018\)

Step by step solution

01

Given data

\(p\left( {\frac{E}{{{F_1}}}} \right) = \frac{2}{7},p\left( {\frac{E}{{{F_2}}}} \right) = \frac{3}{8},p\left( {\frac{E}{{{F_3}}}} \right) = \frac{1}{2},p\left( {{F_1}} \right) = \frac{1}{6},p\left( {{F_2}} \right) = \frac{1}{2}\)and\(p\left( {{F_3}} \right) = \frac{1}{3}\)

02

Formula used   

\(p\left( {\frac{E}{{{E_1}}}} \right) = \frac{{p\left( {\frac{{{E_1}}}{E}} \right)p\left( E \right)}}{{p\left( {\frac{{{E_1}}}{E}} \right)p\left( E \right) + p\left( {\frac{{{E_2}}}{F}} \right)p\left( F \right)}}\)

03

Calculating  

\(p\left( {\frac{{{F_2}}}{E}} \right) = \frac{{p\left( {\frac{E}{{{F_2}}}} \right)p\left( {{F_2}} \right)}}{{p\left( {\frac{E}{{{F_1}}}} \right)p\left( {{F_1}} \right) + p\left( {\frac{E}{{{F_2}}}} \right)p\left( {{F_2}} \right) + p\left( {\frac{E}{{{F_3}}}} \right)p\left( {{F_3}} \right)}}\)

\( = \frac{{\left( {\frac{3}{8}} \right)\left( {\frac{1}{2}} \right)}}{{\left( {\frac{2}{7}} \right)\left( {\frac{1}{6}} \right) + \left( {\frac{3}{8}} \right)\left( {\frac{1}{2}} \right) + \left( {\frac{1}{6}} \right)\left( {\frac{1}{3}} \right)}}\)

\( = \frac{7}{{15}}\)

\( = 0.4018\)

\(p\left( {\frac{{{F_2}}}{E}} \right) = 0.4018\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free