b)
Let us assume \({X_1}\;,\;{X_2}\) random variables \({X_1}(i,j) = i\;,\;{X_2}(i,j) = j\).
Here \({X_1}\) is the number appearing on the octahedral die and \({X_2}\) is the number appearing on the dodecahedral die.
\(\begin{aligned}{}E\left( {{X_1}^2} \right) &= \frac{1}{8}\left( {{1^2} + {2^2} + {3^2} + {4^2} + {5^2} + {6^2} + {7^2} + {8^2}} \right)\\E\left( {{X_1}^2} \right) &= \frac{{51}}{2}\end{aligned}\)
For variance \(V({X_1})\):
\(\begin{aligned}{}V({X_1}) &= E\left( {{X_1}^2} \right) - E\left( {_1^X} \right.\\V({X_1}) &= \frac{{51}}{2} - {()^{\frac{9}{2}}}\\V({X_1}) &= \frac{{21}}{4}\end{aligned}\)
Then, it is find as
\(\begin{aligned}{}E\left( {{X_2}^2} \right) &= \frac{1}{8}\left( {{1^2} + {2^2} + {3^2} + \ldots .. + {{12}^2}} \right)\\E\left( {{X_2}^2} \right) &= \frac{{325}}{6}\end{aligned}\)
For variance \(V({X_2})\):
\(\begin{aligned}{}V({X_2}) &= E\left( {{X_2}^2} \right) - E\left( {_2^X} \right.\\V({X_2}) &= \frac{{325}}{6} - {()^{\frac{{13}}{2}}}\\V({X_2}) &= \frac{{143}}{{12}}\end{aligned}\)
Sum of variance is given as:
\(\begin{aligned}{}V(X) &= V({X_1}) + V({X_2})\\V(X) &= \frac{{21}}{4} + \frac{{143}}{{12}}\\V(X) &= \frac{{103}}{6}\end{aligned}\)
Therefore, the variance of the sum of the numbers that comes up is \(\frac{{103}}{6}\).