b)
Let us assume \({X_1}\;,\;{X_2}\) random variables \({X_1}(i,j) = i\;,\;{X_2}(i,j) = j\).
Here \({X_1}\) is the number appearing on the first die and \({X_2}\) is the number appearing on the fair octahedral die.
\(\begin{aligned}{}E\left( {X{1^2}} \right) &= \frac{1}{8}\left( {{1^2} + {2^2} + {3^2} + {4^2} + {5^2} + {6^2}} \right)\\E\left( {X{1^2}} \right) &= \frac{{91}}{6}\end{aligned}\)
For variance \(V({X_1})\):
\(\begin{aligned}{}V({X_1}) &= E\left( {{X_2}} \right) - E\left( {\begin{aligned}{{}{}}X\\1\end{aligned}} \right.\\V({X_1}) &= \frac{{91}}{2} - {()^{\frac{7}{2}}}\\V({X_1}) &= \frac{{35}}{{12}}\end{aligned}\)
For variance \(V({X_2})\):
\(\begin{aligned}{}E\left( {{X_2}^2} \right) &= \frac{1}{8}\left( {{1^2} + {2^2} + {3^2} + \ldots .. + {8^2}} \right)\\E\left( {{X_2}^2} \right) &= \frac{{204}}{8}\end{aligned}\)
\(\begin{aligned}{}V({X_2}) &= E\left( {{X_2}^2} \right) - E\left( {_2^X} \right.\\V({X_2}) &= \frac{{51}}{2} - {()^{\frac{9}{2}}}\\V({X_2}) &= \frac{{21}}{4}\end{aligned}\)
Sum of variances is given as:
\(\begin{aligned}{}V(X) &= V({X_1}) + V({X_2})\\V(X) &= \frac{{35}}{{12}} + \frac{{21}}{4}\\V(X) &= \frac{{49}}{6}\end{aligned}\)
Therefore, the variance of the sum of the numbers that comes up is \(\frac{{49}}{6}\).