Permutation (order is important) is defined as:
No repetition allowed:\({\rm{P(n,r) = }}\frac{{{\rm{n!}}}}{{{\rm{(n - r)!}}}}\)
Repetition allowed:\({{\rm{n}}^{\rm{r}}}\)
The following is a definition of a combination (the order is irrelevant):
No repetition allowed:\({\rm{C(n,r) = }}\left( {\begin{array}{*{20}{c}}{\rm{n}}\\{\rm{r}}\end{array}} \right){\rm{ = }}\frac{{{\rm{n!}}}}{{{\rm{r!(n - r)!}}}}\)
Repetition allowed:\({\rm{C(n + r - 1,r) = }}\frac{{{\rm{(n + r - 1)!}}}}{{{\rm{r!(n - 1)!}}}}\)
with\({\rm{n! = n \times (n - 1) \times \ldots \times 2 \times 1}}\).
Stirling numbers of the second kind
\({\rm{S(n,j) = }}\frac{{\rm{1}}}{{{\rm{j!}}}}\sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\)
The number of ways to distribute\({\rm{n}}\)distinguishable objects into\({\rm{k}}\)indistinguishable boxes is then:
\(\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\rm{S}} {\rm{(n,j) = }}\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\frac{{\rm{1}}}{{{\rm{j!}}}}} \sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\)
SOLUTION
Labelled\( \Rightarrow \)Distinguishable
Unlabelled \( \Rightarrow \)Indistinguishable