Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many ways are there to put five temporary employees into four identical offices?

Short Answer

Expert verified

There are 51 waysto put five temporary employees into four identical offices.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept Introduction

Counting is the act of determining the quantity or total number of objects in a set or a group in mathematics. To put it another way, to count is to say numbers in sequence while giving a value to an item in a group on a one-to-one basis. Objects are counted using counting numbers.

02

 How many ways are there to put five temporary employees

Consider the second-kind enthralling numbers,

\({\rm{S(n,j) = }}\frac{{\rm{1}}}{{{\rm{j!}}}}\sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\)

The number of possible distributions of \({\rm{n}}\)distinct objects into \({\rm{k}}\)indistinguishable boxes is then:

\(\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\rm{S}} {\rm{(n,j) = }}\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\frac{{\rm{1}}}{{{\rm{j!}}}}} \sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\)

We want to know how many different methods there are to distribute five distinct objects (temporary employees) into four indistinguishable boxes (identical offices).

\({\rm{n = 5}}\)

\({\rm{k = 4}}\)

Let's look at the second-kind Stirling numbers with\({\rm{j = 1,2,3,4}}\):

\(\begin{array}{c}{\rm{S(5,1) = }}\frac{{\rm{1}}}{{{\rm{1!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{0}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{1}}\\{\rm{i}}\end{array}} \right){{\rm{(1 - i)}}^{\rm{5}}}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1!}}}}{{\rm{( - 1)}}^{\rm{0}}}\left( {\begin{array}{*{20}{l}}{\rm{1}}\\{\rm{0}}\end{array}} \right){{\rm{(1 - 0)}}^{\rm{5}}}{\rm{ = 1}}\\{\rm{S(5,2) = }}\frac{{\rm{1}}}{{{\rm{2!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{1}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{2}}\\{\rm{i}}\end{array}} \right){{\rm{(2 - i)}}^{\rm{5}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\left( {{{{\rm{( - 1)}}}^{\rm{0}}}\left( {\begin{array}{*{20}{l}}{\rm{2}}\\{\rm{0}}\end{array}} \right){{{\rm{(2 - 0)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{1}}}\left( {\begin{array}{*{20}{l}}{\rm{2}}\\{\rm{1}}\end{array}} \right){{{\rm{(2 - 1)}}}^{\rm{5}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\left( {{{\rm{2}}^{\rm{5}}}{\rm{ + ( - 2)}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times (32 - 2)}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times (30)}}\\{\rm{ = 15}}\end{array}\)

\(\begin{array}{c}{\rm{S(5,3) = }}\frac{{\rm{1}}}{{{\rm{3!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{2}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{3}}\\{\rm{i}}\end{array}} \right){{\rm{(3 - i)}}^{\rm{5}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times }}\left( {{{{\rm{( - 1)}}}^{\rm{0}}}\left( {\begin{array}{*{20}{l}}{\rm{3}}\\{\rm{0}}\end{array}} \right){{{\rm{(3 - 0)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{1}}}\left( {\begin{array}{*{20}{l}}{\rm{3}}\\{\rm{1}}\end{array}} \right){{{\rm{(3 - 1)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{2}}}\left( {\begin{array}{*{20}{l}}{\rm{3}}\\{\rm{2}}\end{array}} \right){{{\rm{(3 - 2)}}}^{\rm{5}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times }}\left( {{{\rm{3}}^{\rm{5}}}{\rm{ + ( - 3) \times }}{{\rm{2}}^{\rm{5}}}{\rm{ + 3}}} \right){\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times (243 - 96 + 3)}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times (150) = 25}}\\{\rm{S(5,4) = }}\frac{{\rm{1}}}{{{\rm{4!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{3}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{4}}\\{\rm{i}}\end{array}} \right){{\rm{(4 - i)}}^{\rm{5}}}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{24}}}}{\rm{ \times }}\left( {{{{\rm{( - 1)}}}^{\rm{0}}}\left( {\begin{array}{*{20}{l}}{\rm{4}}\\{\rm{0}}\end{array}} \right){{{\rm{(4 - 0)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{1}}}\left( {\begin{array}{*{20}{l}}{\rm{4}}\\{\rm{1}}\end{array}} \right){{{\rm{(4 - 1)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{2}}}\left( {\begin{array}{*{20}{l}}{\rm{4}}\\{\rm{2}}\end{array}} \right){{{\rm{(4 - 2)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{3}}}\left( {\begin{array}{*{20}{l}}{\rm{4}}\\{\rm{3}}\end{array}} \right){{{\rm{(4 - 3)}}}^{\rm{5}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{24}}}}{\rm{ \times }}\left( {{{\rm{4}}^{\rm{5}}}{\rm{ + ( - 4) \times }}{{\rm{3}}^{\rm{5}}}{\rm{ + 6 \times }}{{\rm{2}}^{\rm{5}}}{\rm{ + ( - 4)}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{24}}}}{\rm{ \times (1024 - 972 + 192 - 4)}}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{24}}}}{\rm{ \times (240)}}\\{\rm{ = 10}}\end{array}\)

The number of possible distributions of \({\rm{n}}\)distinct objects into \({\rm{k}}\)indistinguishable boxes is then:

\(\begin{array}{c}\sum\limits_{{\rm{j = 1}}}^{\rm{4}} {\rm{S}} {\rm{(5,j) = S(5,1) + S(5,2) + S(5,3) + S(5,4)}}\\{\rm{ = 1 + 15 + 25 + 10}}\\{\rm{ = 51}}\end{array}\)

Therefore, there are 51 waysto put five temporary employees into four identical offices.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free