Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the name of a file in a computer directory consists of three digits followed by two lowercase letters and each digit is 0,1 , or 2 , and each letter is either a or b. List the name of these files in lexicographic order, where we order letters using the usual alphabetic order of letters.

Short Answer

Expert verified

The list in lexicographic order is:

\(\begin{array}{l}{\rm{000 a a, 000 a b, 000 b a, 000 b b, 001 a a, 001 a b, 001 b a, 001 b b, 002 a a, 002 a b,}}\\{\rm{002 b a, 002 b b, 010 a a, 010 a b, 010 b a, 010 b b, 011 a b, 011 b a, 011 b b, 012 a b,}}\\{\rm{012 b a, 012 b b, 020 a b, 020 b a, 020 b b, 021 a b, 021 b a, 021 b b, 022 a b, 022 b a, }}\\{\rm{022 b b, 100 a b, 100 b a, 100 b b, 101 a b, 101 b a, 101 b b, 102 a b, 102 b a, 102 b b, }}\\{\rm{110 a b, 110 b a, 110 b b, 111 a b, 111 b a, 111 b b, 112 a b, 112 b a, 112 b b, 120 a b,}}\\{\rm{120 b a, 120 b b, 121 a b, 121 b a, 121 b b, 122 a b, 122 b a, 122 b b, 200 a b, 200 b a,}}\\{\rm{200 b b, 201 a b, 201 b a, 201 b b, 202 a b, 202 b a, 202 b b, 210 a b, 210 b a, 210 b b, }}\\{\rm{211 a b, 211 b a, 211 b b, 212 a b, 212 b a, 212 b b, 220 a b, 220 b a, 220 b b, 221 a b,}}\\{\rm{221 b a, 221 b b, 222 a b, 222 b a, 222 b b,}}\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition of Concept

Permutations: A permutation of a set is a loosely defined arrangement of its members into a sequence or linear order, or, if the set is already ordered, a rearrangement of its elements, in mathematics. The act of changing the linear order of an ordered set is also referred to as "permutation."

Lexicographic order: The lexicographic or lexicographical order (also known as lexical order or dictionary order) in mathematics is a generalization of the alphabetical order of dictionaries to sequences of ordered symbols or, more broadly, elements of a totally ordered set.

02

List the names of the files in lexicographic order where we order letters using the usual alphabetic order of letters

Considering the given information:

Letter = a or b

Digit =\({\rm{0,1,2}}\)

Using the following concept:

Letters are ordered alphabetically in lexicographic order.\({{\rm{a}}_{\rm{i}}}{\rm{ < }}{{\rm{b}}_{\rm{i}}}\)For the first i in which\({{\rm{a}}_{\rm{i}}}\) and\({{\rm{b}}_{\rm{i}}}\) differ.

The total number of files in the list is:

\(\begin{array}{l}{\rm{ = }}{{\rm{3}}^{\rm{2}}}{\rm{ \times }}{{\rm{2}}^{\rm{2}}}\\{\rm{ = 27 \times 4}}\\{\rm{ = 108}}\end{array}\)

Therefore, the required list in lexicographic order is:

\(\begin{array}{l}{\rm{000 a a, 000 a b, 000 b a, 000 b b, 001 a a, 001 a b, 001 b a, 001 b b, 002 a a, 002 a b,}}\\{\rm{002 b a, 002 b b, 010 a a, 010 a b, 010 b a, 010 b b, 011 a b, 011 b a, 011 b b, 012 a b,}}\\{\rm{012 b a, 012 b b, 020 a b, 020 b a, 020 b b, 021 a b, 021 b a, 021 b b, 022 a b, 022 b a, }}\\{\rm{022 b b, 100 a b, 100 b a, 100 b b, 101 a b, 101 b a, 101 b b, 102 a b, 102 b a, 102 b b, }}\\{\rm{110 a b, 110 b a, 110 b b, 111 a b, 111 b a, 111 b b, 112 a b, 112 b a, 112 b b, 120 a b,}}\\{\rm{120 b a, 120 b b, 121 a b, 121 b a, 121 b b, 122 a b, 122 b a, 122 b b, 200 a b, 200 b a,}}\\{\rm{200 b b, 201 a b, 201 b a, 201 b b, 202 a b, 202 b a, 202 b b, 210 a b, 210 b a, 210 b b, }}\\{\rm{211 a b, 211 b a, 211 b b, 212 a b, 212 b a, 212 b b, 220 a b, 220 b a, 220 b b, 221 a b,}}\\{\rm{221 b a, 221 b b, 222 a b, 222 b a, 222 b b,}}\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a) Derive a formula for the number of permutations ofobjects of k different types, where there aren1 indistinguishable objects of type one,n2 indistinguishable objects of type two,..., andnk indistinguishable objects of type k.

b) How many ways are there to order the letters of the word INDISCREETNESS?

One hundred tickets, numbered \(1,2,3, \ldots ,100\), are sold to \(100\) different people for a drawing. Four different prizes are awarded, including a grand prize (a trip to Tahiti). How many ways are there to award the prizes if

a) there are no restrictions?

b) the person holding ticket \(47\) wins the grand prize?

c) the person holding ticket \(47\) wins one of the prizes?

d) the person holding ticket \(47\) does not win a prize?

e) the people holding tickets \(19\) and \(47\) both win prizes?

f) the people holding tickets \(19\;,\;47\)and \(73\) all win prizes?

g) the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) all win prizes?

h) none of the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) wins a prize?

i) the grand prize winner is a person holding ticket \(19\;,\;47\;,\;73\) or \(97\)?

j) the people holding tickets 19 and 47 win prizes, but the people holding tickets \(73\) and \(97\) do not win prizes?

In how many ways can a set of five letters be selected from the English alphabet?

Prove the identity\(\left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right)\left( {\begin{array}{*{20}{l}}r\\k\end{array}} \right) = \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\left( {\begin{array}{*{20}{l}}{n - k}\\{r - k}\end{array}} \right)\), whenever\(n\),\(r\), and\(k\)are nonnegative integers with\(r \le n\)and\(k{\rm{ }} \le {\rm{ }}r\),

a) using a combinatorial argument.

b) using an argument based on the formula for the number of \(r\)-combinations of a set with\(n\)elements.

In how many different ways can five elements be selected in order from a set with five elements when repetition is allowed?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free